FN-doped carbon dots were synthesized using powdered leaves of Moringa oleifera L./Chromolaena odorata L./Tridax procumbens L./Tinospora cordifolia L./ and Lantana camara L., along with a precursor called 4,5-difluoro-1,2-benzenediamine (DFBD) and compared against the drug zaltoprofen derived carbon dots. They were assessed for their optical and structural characteristics using photoluminescence (optimal emission λ of 600 nm), vibrational (FTIR) spectroscopy (characteristic wave numbers of 1156 and 1269 cm for C-F), as well as X-ray diffraction (XRD) (highest intensity at 27.56°) and high-resolution transmission electron microscopy (HR-TEM) (particles in the size range of 15-20 nm). Further, field emission scanning electron microscopy (FESEM) / energy dispersive spectroscopy (EDX) indicated FN doping of oval/oblong carbon dots. Membrane protection in percent is found to be 55.3 and 80.4 for FN-CDs and Z-FN-CDs respectively. The DPPH-free radical scavenging activity by FN-CDs was 69.4%, while with Z-FN-CDs, it was 54.2%. When tested on six bacterial strains (three each for gram-positive and gram-negative), the FN-CDs displayed a halo (ZOI) between 9 and 19 mm, whereas the Z-FN-CDs displayed a clearance zone between 9 and 17 mm. The FN-CDs showed significant emission-red-shift effects and demonstrated concentration-dependent biocompatibility and viability in neuroblastoma and beta-TC6-cell lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161473PMC
http://dx.doi.org/10.1038/s41598-024-63700-wDOI Listing

Publication Analysis

Top Keywords

carbon dots
16
drug zaltoprofen
8
electron microscopy
8
heteroatom-doped carbon
4
dots
4
dots medicinal
4
medicinal plants
4
plants novel
4
novel biomaterials
4
biomaterials as-use
4

Similar Publications

Abdominal aortic aneurysm (AAA) is a cardiovascular disease with potentially fatal consequences, yet effective therapies to prevent its progression remain unavailable. Oxidative stress is associated with AAA development. Carbon dots have reactive oxygen species-scavenging activity, while green tea extract exhibits robust antioxidant properties.

View Article and Find Full Text PDF

Nanozymes, a revolutionary category of engineered artificial enzymes based on nanomaterials, have been developed to overcome the inherent limitations of natural enzymes, such as the high cost associated with storage and their fragility. Carbon dots (CDs) have emerged as compelling candidates for various applications due to their versatile properties. Particularly noteworthy are CDs with a range of surface functional groups that exhibit enzyme-like behavior, combining exceptional performance with catalytic capabilities.

View Article and Find Full Text PDF

Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.

Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.

View Article and Find Full Text PDF

L-tryptophan carbon dots as a fluorescent probe for malachite green detection.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India. Electronic address:

Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!