MINFLUX has achieved extraordinary resolution in superresolution imaging and single fluorophore tracking. It is based on localizing single fluorophores by rapid probing with a patterned beam that features a local intensity minimum. Current implementations, however, are complex and expensive and are limited in speed and robustness. Here, we show that a combination of an electro-optical modulator with a segmented birefringent element such as a spatial light modulator produces a variable phase plate for which the phase can be scanned on the MHz timescale. Bisected or top-hat phase patterns generate high-contrast compact excitation point-spread functions for MINFLUX localization in the x, y, and z-direction, respectively, which can be scanned across a fluorophore within a microsecond, switched within 60 microseconds and alternated among different excitation wavelengths. We discuss how to compensate for non-optimal performance of the components and present a robust 3D and multi-color MINFLUX excitation module, which we envision as an integral component of a high-performance and cost-effective open-source MINFLUX.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161593 | PMC |
http://dx.doi.org/10.1038/s41377-024-01487-1 | DOI Listing |
Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
Optical imaging access to nanometer-level protein distributions in intact tissue is a highly sought-after goal, as it would provide visualization in physiologically relevant contexts. Under the unfavorable signal-to-background conditions of increased absorption and scattering of the excitation and fluorescence light in the complex tissue sample, superresolution fluorescence microscopy methods are severely challenged in attaining precise localization of molecules. We reasoned that the typical use of a confocal detection pinhole in MINFLUX nanoscopy, suppressing background and providing optical sectioning, should facilitate the detection and resolution of single fluorophores even amid scattering and optically challenging tissue environments.
View Article and Find Full Text PDFScience
October 2024
Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
Optical investigations of nanometer distances between proteins, their subunits, or other biomolecules have been the exclusive prerogative of Förster resonance energy transfer (FRET) microscopy for decades. In this work, we show that MINFLUX fluorescence nanoscopy measures intramolecular distances down to 1 nanometer-and in planar projections down to 1 angstrom-directly, linearly, and with angstrom precision. Our method was validated by quantifying well-characterized 1- to 10-nanometer distances in polypeptides and proteins.
View Article and Find Full Text PDFLight Sci Appl
June 2024
European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany.
MINFLUX has achieved extraordinary resolution in superresolution imaging and single fluorophore tracking. It is based on localizing single fluorophores by rapid probing with a patterned beam that features a local intensity minimum. Current implementations, however, are complex and expensive and are limited in speed and robustness.
View Article and Find Full Text PDFSmall Methods
September 2024
Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
The single-molecule localization concept MINFLUX has triggered a reevaluation of the features of fluorophores for attaining nanometer-scale resolution. MINFLUX nanoscopy benefits from temporally controlled fluorescence ("on"/"off") photoswitching. Combined with an irreversible switching behavior, the localization process is expected to turn highly efficient and quantitative data analysis simple.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!