Protein nanoparticles as drug delivery systems for cancer theranostics.

J Control Release

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China. Electronic address:

Published: July 2024

Protein-based nanoparticles have garnered significant attention in theranostic applications due to their superior biocompatibility, exceptional biodegradability and ease of functionality. Compared to other nanocarriers, protein-based nanoparticles offer additional advantages, including biofunctionality and precise molecular recognition abilities, which make them highly effective in navigating complex biological environments. Moreover, proteins can serve as powerful tools with self-assembling structures and reagents that enhance cell penetration. And their derivation from abundant renewable sources and ability to degrade into harmless amino acids further enhance their suitability for biomedical applications. However, protein-based nanoparticles have so far not realized their full potential. In this review, we summarize recent advances in the use of protein nanoparticles in tumor diagnosis and treatment and outline typical methods for preparing protein nanoparticles. The review of protein nanoparticles may provide useful new insights into the development of biomaterial fabrication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2024.06.004DOI Listing

Publication Analysis

Top Keywords

protein nanoparticles
16
protein-based nanoparticles
12
nanoparticles
6
protein
4
nanoparticles drug
4
drug delivery
4
delivery systems
4
systems cancer
4
cancer theranostics
4
theranostics protein-based
4

Similar Publications

Biodegradable Vanadium-Based Nanomaterials for Photothermal-Enhanced Tumor Ferroptosis and Pyroptosis.

ACS Appl Mater Interfaces

January 2025

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.

The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.

View Article and Find Full Text PDF

Exposure to nano-polystyrene during pregnancy leads to Alzheimer's disease-related pathological changes in adult offspring.

Ecotoxicol Environ Saf

January 2025

Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China. Electronic address:

Nanoplastics are common environmental pollutants. As of now, research has yet to explore how exposure to nanomaterials during gestation might influence the risk of developing Alzheimer's disease (AD) in offspring. Throughout the research, we assessed the AD pathology in adult offspring of mice prenatal 80 nm polystyrene nanoparticles (PS-NPs) exposure.

View Article and Find Full Text PDF

Oxygen-Driven Atom Transfer Radical Polymerization.

J Am Chem Soc

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.

View Article and Find Full Text PDF

Protein nanoparticles as potent delivery vehicles for polycytosine RNA-binding protein one.

World J Diabetes

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, Guangdong Province, China.

Ma recently reported in the that ferroptosis occurs in osteoblasts under high glucose conditions, reflecting diabetes pathology. This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1 (PCBP1). Additionally, Ma used a lentivirus infection system to express PCBP1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!