The neoantigens derived from transposable elements - A hidden treasure for cancer immunotherapy.

Biochim Biophys Acta Rev Cancer

Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. Electronic address:

Published: September 2024

Neoantigen-based therapy is a promising approach that selectively activates the immune system of the host to recognize and eradicate cancer cells. Preliminary clinical trials have validated the feasibility, safety, and immunogenicity of personalized neoantigen-directed vaccines, enhancing their effectiveness and broad applicability in immunotherapy. While many ongoing oncological trials concentrate on neoantigens derived from mutations, these targets do not consistently provoke an immune response in all patients harboring the mutations. Additionally, tumors like ovarian cancer, which have a low tumor mutational burden (TMB), may be less amenable to mutation-based neoantigen therapies. Recent advancements in next-generation sequencing and bioinformatics have uncovered a rich source of neoantigens from non-canonical RNAs associated with transposable elements (TEs). Considering the substantial presence of TEs in the human genome and the proven immunogenicity of TE-derived neoantigens in various tumor types, this review investigates the latest findings on TE-derived neoantigens, examining their clinical implications, challenges, and unique advantages in enhancing tumor immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbcan.2024.189126DOI Listing

Publication Analysis

Top Keywords

neoantigens derived
8
transposable elements
8
te-derived neoantigens
8
neoantigens
5
derived transposable
4
elements hidden
4
hidden treasure
4
treasure cancer
4
cancer immunotherapy
4
immunotherapy neoantigen-based
4

Similar Publications

XCL1-secreting CEA CAR-T cells enhance endogenous CD8 T cell responses to tumor neoantigens to confer a long-term antitumor immunity.

J Immunother Cancer

January 2025

Immunology Department, State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Background: Therapeutic efficacy of carcinoembryonic antigen (CEA)-specific chimeric antigen receptor (CAR) T cells against colorectal cancer (CRC) remains limited due to the unique characteristics and distinct microenvironments of tumor tissues. We modified CEA-specific CAR-T cells, aiming to stimulate endogenous CD8 T cell responses against neoantigens that were derived from CEA-positive tumors destroyed by the CAR T cells.

Methods: In a conventional CEA CAR (reg-CAR), we modified it to express lymphotactin XCL1 and interleukin (IL)-7 genes, constructing a modified 7XCL1-CAR.

View Article and Find Full Text PDF

New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.

View Article and Find Full Text PDF

Background/aim: The Kaplan-Meier curves for patients treated with immune checkpoint inhibitors (ICIs) display a small group of potentially-cured patients with long-term survival, creating a 'kangaroo-tail' shape of the survival curve. However, the mechanistic basis of this phenomenon and what occurs in patients whose cancer is resistant to ICIs remain unclear. The present study aimed to answer these questions.

View Article and Find Full Text PDF

Driver mutation landscape of acute myeloid leukemia provides insights for neoantigen-based immunotherapy.

Cancer Lett

December 2024

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Acute myeloid leukemia (AML) has lagged in benefiting from immunotherapies, primarily due to the scarcity of actionable AML-specific antigens. Driver mutations represent promising immunogenic targets, but a comprehensive characterization of the AML neoantigen landscape and their impact on patient outcomes and the AML immune microenvironment remain unclear. Herein, we conducted matched DNA and RNA sequencing on 304 AML patients and extensively integrated data from additional ∼2,500 AML cases, identifying 49 driver genes, notably characterized by a significant proportion of insertions and deletions (indels).

View Article and Find Full Text PDF

Background: The immune response against tumors relies on distinguishing between self and non-self, the basis of cancer immunotherapy. Neoantigens from somatic mutations are central to many immunotherapeutic strategies and understanding their landscape in breast cancer is crucial for targeted interventions. We aimed to profile neoantigens in Kenyan breast cancer patients using genomic DNA and total RNA from paired tumor and adjacent non-cancerous tissue samples of 23 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!