Purpose: Membrane associated ubiquitin ligase MARCH2 majorly involves in inflammation response and protein trafficking. However, its comprehensive role in hepatocellular carcinoma (HCC) is largely unknown.
Methods: Firstly, multiple bioinformatic analyses were applied to determine MARCH2 mRNA level, its expression comparison in diverse molecular and immune subtypes, and diagnostic value in HCC. Subsequently, RNA-seq, real-time quantitative PCR, immunohistochemistry and cell proliferation assay are used to explore the epithelial-mesenchymal transition (EMT) and proliferation by gene-silencing or overexpressing in cultured HCC cells or in vivo xenograft. Moreover, dual luciferase reporter assay and immunoblotting are delved into verify the transcription factor that activating MARCH2 promoter.
Results: Multiple bioinformatic analyses demonstrate that MARCH2 is upregulated in multiple cancer types and exhibits startling diagnostic value as well as distinct molecular and immune subtypes in HCC. RNA-seq analysis reveals MARCH2 may promote EMT, cell proliferation and migration in HepG2 cells. Furthermore, overexpression of MARCH2 triggers EMT and significantly enhances HCC cell migration, proliferation and colony formation in a ligase activity-dependent manner. Additionally, above observations are validated in the HepG2 mice xenografts. For up-stream mechanism, transcription factor KLF15 is highly expressed in HCC and activates MARCH2 expression.
Conclusion: KLF15 activated MARCH2 triggers EMT and serves as a fascinating biomarker for precise diagnosis of HCC. Consequently, MARCH2 emerges as a promising candidate for target therapy in cancer management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2024.114117 | DOI Listing |
J Dent Sci
January 2025
Endodontic Department, Changzhou Stomatological Hospital, Changzhou, China.
Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.
View Article and Find Full Text PDFJ Dent Sci
January 2025
School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Background/purpose: Early osseointegration of titanium (Ti) dental implants relies on the surface topography. Surface modification of Ti seeks to enhance bone regeneration around implants. Acid etching is the simple, less technique sensitive and cost-effective technique for surface treatment.
View Article and Find Full Text PDFJ Dent Sci
January 2025
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Background/purpose: Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement.
View Article and Find Full Text PDFJ Dent Sci
January 2025
School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.
Background/purpose: -2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is a bioactive component in the Chinese herb Polygonum multiflorum, recognized for its anti-inflammatory and lipid-lowering properties. Human dental pulp stem cells (hDPSCs) have excellent capabilities in tooth regeneration, wound healing, and neural repair. The exosomes (Exo) released by hDPSCs contain bioactive molecules that influence cell proliferation, differentiation, and immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!