Volatile organic compounds (VOCs) serve as crucial precursors to surface ozone and secondary organic aerosols (SOA). In response to severe air pollution challenges, China has implemented key air quality control policies from 2013 to 2021. Despite these efforts, a comprehensive understanding of the chemical composition and sources of urban atmospheric VOCs and their responses to emission reduction measures remains limited. Our study focuses on analyzing VOCs composition and concentrations during the winters of 2013 and 2021 through online field observations in urban Nanjing, a typical city in the Yangtze River Delta region of China. Using a machine learning approach, we found a notable reduction in total VOCs concentration from 52.4 ± 30.4 ppb to 33.9 ± 21.6 ppb between the two years, with dominant contributions (approximately 94.3 %) associated with anthropogenic emission control. Furthermore, alkanes emerged as the major contributors (48.6 %) to such anthropogenic-driven decline. The total SOA formation potential decreased by approximately 27.4 %, with aromatics identified as the major contributing species. Positive matrix factorization analysis identified six sources. In 2013, prominent contributors were solid fuel combustion (43.6 %), vehicle emission (16.7 %), and paint and solvent use (12.8 %). By 2021, major sources shifted to solid fuel combustion (31.9 %), liquefied petroleum gas and natural gas (26.8 %), and vehicle emission (25.5 %). Solid fuel combustion emerged as the primary driver for total VOCs reduction. The lifetime carcinogenic risk in 2021 decreased by 72.6 % relative to 2013, emphasizing the need to address liquefied petroleum gas and natural gas source, and vehicle emissions for improved human health. Our findings contribute critical insights for policymakers working on effective air quality management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173713 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!