In-situ self-reinforcement of amorphous polylactide (PLA) through induced crystallites network and its highly ductile and toughened PLA/poly(butylene adipate-co-terephthalate) (PBAT) blends.

Int J Biol Macromol

Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey. Electronic address:

Published: June 2024

Crystallites of a semicrystalline polylactide (cPLA) were induced in an amorphous PLA (aPLA) and its blends with poly(butylene adipate-co-terephthalate) (PBAT) to achieve in-situ self-reinforced PLA based structures. The approach involved the melt blending of cPLA as a minor phase with aPLA and its blends with PBAT at processing temperatures below the crystal melting peak of cPLA. An injection molding (IM) process was first adopted to obtain self-reinforced PLA (SR-PLA) structures at aPLA/cPLA weight ratios of 100/0, 95/5, 90/10, 85/15, and 80/20. IM barrel and mold temperatures revealed crucial impacts on preserving the cPLA crystallites and thereby enhancing the final mechanical performance of SR-PLA (i.e., aPLA/cPLA) samples. SR-PLA samples at various aPLA/cPLA weight ratios of 100/0, 90/10, 80/20, and 70/30 were then melt blended with PBAT to produce SR-PLA/PBAT at a given ratio of 85/15. These blends were first prepared in an internal melt mixer (MM) to evaluate the rheological properties. The rheological analysis confirmed the significance of cPLA reinforcing efficiency within SR-PLA and its corresponding blends with PBAT. Similar SR-PLA/PBAT blends were also prepared using the IM process to explore their thermal and mechanical characteristics. The effect of cPLA concentrations in blends was distinctive, leading to significant enhancements in stain at break and toughness values. This was due to the increased crystallite network within the matrix, further refining PBAT droplets. Morphological analysis of the melt-processed blends through MM and IM also revealed that the PBAT droplets were further refined when the IM process was applied. The induced shear during the molding could have further elongated the cPLA crystallites towards a fiberlike structure, which could additionally cause the matrix viscosity to increase and refine the PBAT droplets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132936DOI Listing

Publication Analysis

Top Keywords

pbat droplets
12
pbat
8
adipate-co-terephthalate pbat
8
blends
8
apla blends
8
self-reinforced pla
8
blends pbat
8
apla/cpla weight
8
weight ratios
8
ratios 100/0
8

Similar Publications

Article Synopsis
  • PLA is a strong but brittle bioplastic, while PHBH offers better ductility and compostability, suggesting a complementary use in blends.
  • Adding PBAT can improve the ductility of PLA, but blends like PLA/PBAT tend to have lower mechanical strength due to poor dispersion of materials.
  • The best performance was observed with PLA/PHBH blends, particularly with a PLA75/PHBH25 mixture, achieving high tensile strength due to its favorable morphology.
View Article and Find Full Text PDF

In-situ self-reinforcement of amorphous polylactide (PLA) through induced crystallites network and its highly ductile and toughened PLA/poly(butylene adipate-co-terephthalate) (PBAT) blends.

Int J Biol Macromol

June 2024

Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey. Electronic address:

Crystallites of a semicrystalline polylactide (cPLA) were induced in an amorphous PLA (aPLA) and its blends with poly(butylene adipate-co-terephthalate) (PBAT) to achieve in-situ self-reinforced PLA based structures. The approach involved the melt blending of cPLA as a minor phase with aPLA and its blends with PBAT at processing temperatures below the crystal melting peak of cPLA. An injection molding (IM) process was first adopted to obtain self-reinforced PLA (SR-PLA) structures at aPLA/cPLA weight ratios of 100/0, 95/5, 90/10, 85/15, and 80/20.

View Article and Find Full Text PDF

The mechanical behavior of polymer materials is heavily influenced by a phenomenon known as crazing. Crazing is a precursor to damage and leads to the formation of cracks as it grows in both thickness and tip size. The current research employs an in situ SEM method to investigate the initiation and progression of crazing in all-biopolymeric blends based on Polyhydroxyalkanoates (PHAs).

View Article and Find Full Text PDF

Closely Packed Conductive Droplets with Polygon-Like Patterns Confined at the Interface in Ternary Polymer Blends.

Langmuir

March 2022

Centre for Polymers from Renewable Resources, Collage of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.

This work reports on the formation of closely packed conductive droplets demonstrating polygon-like patterns at the interface in partially wetted ternary polymer systems prepared by melt blending and annealing treatment. The low-density polyethylene/poly(ether--amide)/poly(butylene-adipate--terephthalate) (LDPE/PEBA/PBAT) blend showed an intermediate partial wetting tendency where the interfacially localized conductive PEBA phase developed connected structure after blending but transformed into dispersed droplets upon annealing. The coalescence of the PEBA droplets appeared to be initiated by the Rayleigh-type instability in the thin PBAT film separating PEBA.

View Article and Find Full Text PDF

Morphological and rheological properties of poly(lactic acid), PLA (semicrystalline and amorphous), and poly(butylene adipate-co-terephthalate), PBAT, and their blends (75 wt%/25 wt%; PLA/PBAT) were investigated in the presence of cellulose nanocrystals (CNCs) prepared from solution casting followed by melt mixing. For the solution casting step, the CNCs were either incorporated into the matrix, the dispersed phase, or both. The dispersion and distribution of the CNCs in the neat polymers and localization in their blends were analyzed via scanning electron microscopy (SEM) and atomic force microscopy (AFM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!