A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biological functions and biomedical applications of extracellular vesicles derived from blood cells. | LitMetric

Biological functions and biomedical applications of extracellular vesicles derived from blood cells.

Free Radic Biol Med

Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China. Electronic address:

Published: September 2024

AI Article Synopsis

  • There is increasing interest in extracellular vesicles (EVs) from blood cells for therapeutic use, due to their unique properties and ability to affect target cells.
  • EVs are abundant in plasma and can easily be obtained without cell culture, making them a promising option for clinical applications.
  • While they show potential for treating various diseases, further research is needed on isolation methods, quality control, safety, and cost-effectiveness to facilitate their clinical use.

Article Abstract

There is a growing interest in using extracellular vesicles (EVs) for therapeutic applications. EVs are composed of cytoplasmic proteins and nucleic acids and an external lipid bilayer containing transmembrane proteins on their surfaces. EVs can alter the state of the target cells by interacting with the receptor ligand of the target cell or by being internalised by the target cell. Blood cells are the primary source of EVs, and 1 μL of plasma contains approximately 1.5 × 10 EVs. Owing to their easy acquisition and the avoidance of cell amplification in vitro, using blood cells as a source of therapeutic EVs has promising clinical application prospects. This review summarises the characteristics and biological functions of EVs derived from different blood cell types (platelets, erythrocytes, and leukocytes) and analyses the prospects and challenges of using them for clinical therapeutic applications. In summary, blood cell-derived EVs can regulate different cell types such as immune cells (macrophages, T cells, and dendritic cells), stem cells, and somatic cells, and play a role in intercellular communication, immune regulation, and cell proliferation. Overall, blood cell-derived EVs have the potential for use in vascular diseases, inflammatory diseases, degenerative diseases, and injuries. To promote the clinical translation of blood cell-derived EVs, researchers need to perform further studies on EVs in terms of scalable and reproducible isolation technology, quality control, safety, stability and storage, regulatory issues, cost-effectiveness, and long-term efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.06.002DOI Listing

Publication Analysis

Top Keywords

blood cells
12
blood cell-derived
12
cell-derived evs
12
evs
10
cells
9
biological functions
8
extracellular vesicles
8
derived blood
8
therapeutic applications
8
target cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!