Silicon nanowire piezoresistor and its applications: a review.

Nanotechnology

Centre for Innovation and Product Development (CIPD), Vellore Institute of Technology (VIT), Chennai campus, Chennai 600 127, Tamil Nadu, India.

Published: June 2024

AI Article Synopsis

  • Monocrystalline bulk silicon has been the go-to material for MEMS sensors, but there's a rising interest in alternative piezoresistive materials for miniaturized, high-sensitivity applications.
  • Silicon nanowires (SiNWs) are gaining attention for their nanoscale size, high piezoresistive coefficients, and suitability for integrated circuit processes.
  • This review discusses the fundamentals of piezoresistance, compares ungated and gated SiNWs, and highlights their applications in various MEMS sensors like pressure, acceleration, and flow sensors.

Article Abstract

Monocrystalline bulk silicon with doped impurities has been the widely preferred piezoresistive material for the last few decades to realize micro-electromechanical system (MEMS) sensors. However, there has been a growing interest among researchers in the recent past to explore other piezoresistive materials with varied advantages in order to realize ultra-miniature high-sensitivity sensors for area-constrained applications. Of the various alternative piezoresistive materials, silicon nanowires (SiNWs) are an attractive choice due to their benefits of nanometre range dimensions, giant piezoresistive coefficients, and compatibility with the integrated circuit fabrication processes. This review article elucidates the fundamentals of piezoresistance and its existence in various materials, including silicon. It comprehends the piezoresistance effect in SiNWs based on two different biasing techniques, viz., (i) ungated and (ii) gated SiNWs. In addition, it presents the application of piezoresistive SiNWs in MEMS-based pressure sensors, acceleration sensors, flow sensors, resonators, and strain gauges.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad555eDOI Listing

Publication Analysis

Top Keywords

piezoresistive materials
8
piezoresistive
5
sensors
5
silicon
4
silicon nanowire
4
nanowire piezoresistor
4
piezoresistor applications
4
applications review
4
review monocrystalline
4
monocrystalline bulk
4

Similar Publications

In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.

View Article and Find Full Text PDF

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

The development of low-temperature piezoresistive materials provides compatibility with standard silicon-based MEMS fabrication processes. Additionally, it enables the use of such material in flexible substrates, thereby expanding the potential for various device applications. This work demonstrates, for the first time, the fabrication of a 200 nm polycrystalline silicon thin film through a metal-induced crystallization process mediated by an AlSiCu alloy at temperatures as low as 450 °C on top of silicon and polyimide (PI) substrates.

View Article and Find Full Text PDF

First principles design of multifunctional spintronic devices based on super narrow borophene nanoribbons.

Sci Rep

January 2025

Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.

Borophene, as a new material with various configurations, has attracted significant research attention in recent years. In this study, the electronic properties of a series of χ-type borophene nanoribbons (BNRs) are investigated using a first-principles approach. The results show that the width and edge pattern of the nanoribbons can effectively tune their electronic properties.

View Article and Find Full Text PDF

Structural health monitoring (SHM) systems are critical in ensuring the safety of space exploration, as spacecraft and structures can experience detrimental stresses and strains. By deploying conventional strain gauges, SHM systems can promptly detect and assess localized strain behaviors in structures; however, these strain gauges are limited by low sensitivity (gauge factor, GF ∼ 2). This study introduces an approach to printing strain gauges with high sensitivity, while also considering stretchability and long-term durability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!