Predicting ensemble properties, such as density and heat of vaporization, of small hydrocarbons is challenging due to the dispersion-dominated weak interactions between these molecules. With the adaptive force matching (AFM) method, the bonded and short-range nonbonded interactions are fitted to second-order Møller-Plesset perturbation theory (MP2) references computed with the def2-TZVP basis set. The dispersion is modeled using symmetry adapted perturbation theory (SAPT) at MP4 accuracy using the def2-TZVPD basis set. A new charge matrix decomposition technique is described to obtain partial charges in AFM. Although the models developed do not have any empirical parameters, several properties of the resulting models are compared with experiments as validations. The density, heat of vaporization, pressure dependence of density, diffusion constants, and surface tensions all show quantitative agreement with experiments. Although the density shows a very small systematic error, which could be due to missing three-body dispersion, the heat of vaporization agrees with experiments of within 0.5%. The paper shows that AFM can be used as a reliable tool to enable simulations at post-Hartree-Fock quality at the cost of molecular mechanics force fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209940 | PMC |
http://dx.doi.org/10.1021/acs.jctc.4c00509 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
Using many-body perturbation theory, we study the optical properties of phenylthiolate-capped cadmium sulfide nanoparticles to understand the origin of the experimentally observed blue shift in those properties with decreasing particle size. We show that the absorption spectra predicted by many-body perturbation theory agree well with the experimentally measured spectra. The results of our calculations demonstrate that all low-energy excited states correspond to a mixture of two fundamental types of excitations: intraligand and ligand-to-metal charge-transfer excitations.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, 1102 Natural Sciences II, University of California Irvine, Irvine, California, USA.
The high-energy shoulder in the gas-phase fluorescence emission spectrum of pyrene is a well-known example of non-Kasha emission. We comparatively assess two approaches, vibronic perturbation theory and nonadiabatic dynamics, in their ability to predict and explain the gas-phase fluorescence spectrum of pyrene. While both methods qualitatively capture the non-Kasha emission, they differ in their computational requirements, accuracy, and physical interpretation.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China.
Given a number of data sets for evaluating the performance of single reference methods for the low-lying excited states of closed-shell molecules, a comprehensive data set for assessing the performance of multireference methods for the low-lying excited states of open-shell systems is still lacking. For this reason, we propose an extension (QUEST#4X) of the radical subset of QUEST#4 ( , , 3720) to cover 110 doublet and 39 quartet excited states. Near-exact results obtained by iterative configuration interaction with selection and second-order perturbation correction (iCIPT2) are taken as benchmark to calibrate static-dynamic-static configuration interaction (SDSCI) and static-dynamic-static second-order perturbation theory (SDSPT2), which are minimal MRCI and CI-like perturbation theory, respectively.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, USA.
The detection of HC(S)CN in TMC-1 suggests that HC(S)NC may also exist. To aid in its possible detection, HC(S)NC and its deuterated isotopologue DC(S)NC were investigated via high-level ab initio methods, specifically CCSD(T) and CCSD(T)-F12. By utilizing multidimensional potential energy surfaces derived from explicitly correlated coupled-cluster calculations, we analyzed their geometrical parameters, vibrational frequencies, rotational constants, and a comprehensive set of spectroscopic constants generated via the vibrational second-order perturbation theory, vibrational self-consistent field, and vibrational configuration interaction theory(VCI) approaches.
View Article and Find Full Text PDFNPJ Comput Mater
January 2025
Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Density-functional theory with extended Hubbard functionals (DFT + + ) provides a robust framework to accurately describe complex materials containing transition-metal or rare-earth elements. It does so by mitigating self-interaction errors inherent to semi-local functionals which are particularly pronounced in systems with partially-filled d and f electronic states. However, achieving accuracy in this approach hinges upon the accurate determination of the on-site and inter-site Hubbard parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!