Understanding the dynamics of acute HIV infection can offer valuable insights into the early stages of viral behavior, potentially helping uncover various aspects of HIV pathogenesis. The standard viral dynamics model explains HIV viral dynamics during acute infection reasonably well. However, the model makes simplifying assumptions, neglecting some aspects of HIV infection. For instance, in the standard model, target cells are infected by a single HIV virion. Yet, cellular multiplicity of infection (MOI) may have considerable effects in pathogenesis and viral evolution. Further, when using the standard model, we take constant infected cell death rates, simplifying the dynamic immune responses. Here, we use four models-1) the standard viral dynamics model, 2) an alternate model incorporating cellular MOI, 3) a model assuming density-dependent death rate of infected cells and 4) a model combining (2) and (3)-to investigate acute infection dynamics in 43 people living with HIV very early after HIV exposure. We find that all models qualitatively describe the data, but none of the tested models is by itself the best to capture different kinds of heterogeneity. Instead, different models describe differing features of the dynamics more accurately. For example, while the standard viral dynamics model may be the most parsimonious across study participants by the corrected Akaike Information Criterion (AICc), we find that viral peaks are better explained by a model allowing for cellular MOI, using a linear regression analysis as analyzed by R2. These results suggest that heterogeneity in within-host viral dynamics cannot be captured by a single model. Depending on the specific aspect of interest, a corresponding model should be employed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189221 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1012129 | DOI Listing |
One Health Outlook
January 2025
Medical Virology Unit, Faculty of Basic Medical and Applied Sciences, Lead City University and Primary Health Care Board, Ibadan, Oyo State, Nigeria.
Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.
View Article and Find Full Text PDFCytokine Growth Factor Rev
January 2025
MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Lincoln, NE, USA. Electronic address:
IL-17A, referred to as IL-17, is the founding member of a family of pro-inflammatory cytokines, including IL-17B, IL-17C, IL-17D, IL-17E (or IL-25), and IL-17F, which act via receptors IL-17RA to IL-17RE, and elicit potent cellular responses that impact diverse diseases. IL-17's interactions with various cytokines include forming a heterodimer with IL-17F and being stimulated by IL-23's activation of Th17 cells, which can lead to inflammation and autoimmunity. IL-17 is implicated in infectious diseases and inflammatory disorders such as rheumatoid arthritis and psoriasis, promoting neutrophil recruitment and anti-bacterial immunity, but potentially exacerbating fungal and viral infections, revealing its dual role as protective and pathologic.
View Article and Find Full Text PDFCell Rep Methods
January 2025
Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China. Electronic address:
To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable.
View Article and Find Full Text PDFAm J Trop Med Hyg
January 2025
Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea.
The phylogeographic inference approach aims to connect genomic data with epidemiology to understand the spread and evolution of pathogens using visualization of spatiotemporal reconstructions. Orthohantavirus hantanense (HTNV), the causative agent of hemorrhagic fever with renal syndrome (HFRS), represents a significant global public health concern. Here, we introduce a localized Nextstrain platform for HTNV, offering a comprehensive resource for facilitating spatiotemporal genomic surveillance and the study of evolutionary dynamics of viral genomes.
View Article and Find Full Text PDFPLoS One
January 2025
Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!