Magnesium oxide (MgO) is a major component of the Earth's mantle and is expected to play a similar role in the mantles of large rocky exoplanets. At extreme pressures, MgO transitions from the NaCl 1 crystal structure to a CsCl 2 structure, which may have implications for exoplanetary deep mantle dynamics. In this study, we constrain the phase diagram of MgO with laser-compression along the shock Hugoniot, with simultaneous measurements of crystal structure, density, pressure, and temperature. We identify the 1 to 2 phase transition between 397 and 425 gigapascal (around 9700 kelvin), in agreement with recent theory that accounts for phonon anharmonicity. From 425 to 493 gigapascal, we observe a mixed-phase region of B1 and B2 coexistence. The transformation follows the Watanabe-Tokonami-Morimoto mechanism. Our data are consistent with 2-liquid coexistence above 500 gigapascal and complete melting at 634 gigapascal. This study bridges the gap between previous theoretical and experimental studies, providing insights into the timescale of this phase transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160462PMC
http://dx.doi.org/10.1126/sciadv.adk0306DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
phase transition
8
b1-b2 transition
4
transition shock-compressed
4
mgo
4
shock-compressed mgo
4
mgo magnesium
4
magnesium oxide
4
oxide mgo
4
mgo major
4

Similar Publications

Cyclic oligonucleotide-based antiviral signaling systems (CBASS) are bacterial anti-phage defense operons that use nucleotide signals to control immune activation. Here we biochemically screen 57 diverse and phages for the ability to disrupt CBASS immunity and discover anti-CBASS 4 (Acb4) from the phage SPO1 as the founding member of a large family of >1,300 immune evasion proteins. A 2.

View Article and Find Full Text PDF

Organoselenocyanates have attracted considerable attention in recent years due to their therapeutic potential and versatility in medicinal chemistry. Here, we report on the mechanism of inhibition by 5-phenylcarbamoylpentyl selenocyanide (SelSA-2), an analogue of the well-characterized histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, a.k.

View Article and Find Full Text PDF

The [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events.

View Article and Find Full Text PDF

Tagging RNAs with fluorogenic aptamers has enabled imaging of transcripts in living cells, thereby revealing novel aspects of RNA metabolism and dynamics. While a diverse set of fluorogenic aptamers has been developed, a new generation of aptamers are beginning to exploit the ring-opening of spirocyclic rhodamine dyes to achieve robust performance in live mammalian cells. These fluorophores have two chemical states: a colorless, cell-permeable spirocyclic state and a fluorescent zwitterionic state.

View Article and Find Full Text PDF

Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.

Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!