Background: The Ultimate Fighting Championship (UFC) stands as a prominent global platform for professional mixed martial arts, captivating audiences worldwide. With its continuous growth and globalization efforts, UFC events have garnered significant attention and achieved commendable results. However, as the scale of development expands, the operational demands on UFC events intensify. At its core, UFC thrives on the exceptional performances of its athletes, which serve as the primary allure for audiences.

Objective: This study aims to enhance the allure of UFC matches and cultivate exceptional athletes by predicting athlete performance on the field. To achieve this, a recurrent neural network prediction model based on Bidirectional Long Short-Term Memory (BiLSTM) is proposed. The model seeks to leverage athlete portraits and characteristics for performance prediction.

Methods: The proposed methodology involves constructing athlete portraits and analyzing athlete characteristics to develop the prediction model. The BiLSTM-based recurrent neural network is utilized for its ability to capture temporal dependencies in sequential data. The model's performance is assessed through experimental analysis.

Results: Experimental results demonstrate that the athlete performance prediction model achieved an overall accuracy of 0.7524. Comparative analysis reveals that the proposed BiLSTM model outperforms traditional methods such as Linear Regression and Multilayer Perceptron (MLP), showcasing superior prediction accuracy.

Conclusion: This study introduces a novel approach to predicting athlete performance in UFC matches using a BiLSTM-based recurrent neural network. By leveraging athlete portraits and characteristics, the proposed model offers improved accuracy compared to classical methods. Enhancing the predictive capabilities in UFC not only enriches the viewing experience but also contributes to the development of exceptional athletes in the sport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612954PMC
http://dx.doi.org/10.3233/THC-232000DOI Listing

Publication Analysis

Top Keywords

neural network
16
athlete performance
12
recurrent neural
12
prediction model
12
athlete portraits
12
ufc events
8
ufc matches
8
exceptional athletes
8
predicting athlete
8
proposed model
8

Similar Publications

Attention-Based Interpretable Multiscale Graph Neural Network for MOFs.

J Chem Theory Comput

January 2025

The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.

View Article and Find Full Text PDF

DAU-Net: a novel U-Net with dual attention for retinal vessel segmentation.

Biomed Phys Eng Express

January 2025

Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China.

In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model.

View Article and Find Full Text PDF

Humans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle.

View Article and Find Full Text PDF

Marine heatwaves are increasing in intensity and frequency however, responses and survival of reef corals vary geographically. Geographical differences in thermal tolerance may be in part a consequence of intraspecific diversity, where high-diversity localities are more likely to support heat-tolerant alleles that promote survival through thermal stress. Here, we assessed geographical patterns of intraspecific genetic diversity in the ubiquitous coral Pocillopora damicornis species complex using 428 sequences of the Internal Transcribed Spacer 2 (ITS2) region across 44 sites in the Pacific and Indian Oceans.

View Article and Find Full Text PDF

As education increasingly relies on data-driven methodologies, accurately predicting student performance is essential for implementing timely and effective interventions. The California Student Performance Dataset offers a distinctive basis for analyzing complex elements that affect educational results, such as student demographics, academic behaviours, and emotional health. This study presents the GNN-Transformer-InceptionNet (GNN-TINet) model to overcome the constraints of prior models that fail to effectively capture intricate interactions in multi-label contexts, where students may display numerous performance categories concurrently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!