Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202400257 | DOI Listing |
Environ Sci Technol
December 2024
State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.
Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.
View Article and Find Full Text PDFJ Pers Med
November 2024
Otolaryngology Unit, Santi Paolo e Carlo Hospital, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy.
Chronic graft-versus-host disease (cGVHD) and oral lichen planus (LPO) are chronic inflammatory conditions with similar oral manifestations. This study aimed to assess whether serum and salivary cytokines (IL-1α, IL-6, IL-17) could serve as reliable biomarkers for cGVHD. A prospective cohort study was conducted involving cGVHD patients, LPO patients, and healthy controls.
View Article and Find Full Text PDFHypertension
December 2024
Department of Health and Human Physiology, The University of Iowa, Carver College of Medicine, Iowa City, IA. (K.S.S., A.E.S.).
Background: Women who had preeclampsia (a history of preeclampsia) have a >4-fold risk of developing cardiovascular disease compared with women who had an uncomplicated pregnancy (history of healthy pregnancy). Despite the remission of clinical symptoms after pregnancy, vascular endothelial dysfunction persists postpartum, mediated in part by exaggerated Ang II (angiotensin II)-mediated constriction. However, the role of vasodilatory ATRs (Ang II type 2 receptors) in this dysfunction is unknown.
View Article and Find Full Text PDFSmall
December 2024
School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
Confinement of metal species in porous supports is an effective strategy to optimize hydrogenation performance ascribing to tunable nanopore environments. However, only focusing on the electronic structure modulation for metal species has limited the design of improved catalysts. Herein, spatial confinement strategy is reported for constructing ultrasmall metal clusters in nitro-bonded COF (M@TpPa-NO, M = Pd, Pt, Ru, Rh, Ir).
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Department of Chemistry & Biochemistry California State Polytechnic University, Pomona 3801 W Temple Ave Pomona CA 91768 USA.
In the title compound, CHN·2CHNO, 4-nitro-phenol and 4,4'-bi-pyridine crystallized together in a 2:1 ratio in the space group 2/. There is a hydrogen-bonding inter-action between the nitro-gen atoms on the 4,4'-bi-pyridine mol-ecule and the hydrogen atom on the hydroxyl group on the 4-nitro-phenol, resulting in trimolecular units. This structure is a polymorph of a previously reported structure [Nayak & Pedireddi (2016 ▸).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!