Simulating implications of fish behavioral response for managing hypoxia in estuaries with spatial dissolved oxygen variability.

Ecol Modell

Office of Research and Development, U.S. Environmental Protection Agency, United States.

Published: April 2024

Hypoxia, or low dissolved oxygen (DO), is a widespread water quality problem affecting estuaries and coastal waters around the world. Water quality criteria for DO have been established for every estuary in the US and are an important part of the regulatory response to nutrient pollution and associated anthropogenic eutrophication. Experimental studies examining effects of low DO exposure have been to quantify outcomes based on hypoxia effects observed in individuals, such as increased mortality or growth impairment. Although laboratory exposure tests provide useful benchmarks for policy development, most of those considered in policy development did not consider behavioral responses to low DO. However, experimental research has shown that behavioral responses occur, and that behavior modifies exposure to low DO conditions. Here we begin development of a spatially explicit individual based model (SEIBM) intended to project behavioral outcomes of exposure to spatially variable hypoxia in estuaries. Our goal is to consider the responsiveness of an SEIBM to both different behavioral hypotheses, as well as realistic spatial patterns in hypoxia. A sensitivity analysis was used to explore responsiveness based on two movement strategies: avoidance and behavioral switching. We tested the sensitivity of a suite of movement parameters to changes in spatial patterns representative of an index estuary. The sensitivity analysis demonstrated that model responses to changes in movement strategies include biologically meaningful changes in site occupancy and movement distance centered on individual behavior near a normoxic-hypoxic boundary. Further, the model demonstrated important sensitivity to realistic changes in movement parameters, including the size and shape of the individual neighborhood describing knowledge useful for movement decisions. These results support the utility of the developed SEIBM for exploring behavioral responses of fish to hypoxia in estuaries. The sensitivity analysis also demonstrates parameter values that must be set based on empirical data and are sensitive to data quality. These results will be used to further develop the model and to plan field and laboratory studies to support model parametrization. The end goal is a model framework that can inform policy decisions regarding hypoxia resulting from anthropogenic nutrient loading in estuaries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151735PMC
http://dx.doi.org/10.1016/j.ecolmodel.2024.110635DOI Listing

Publication Analysis

Top Keywords

hypoxia estuaries
12
behavioral responses
12
sensitivity analysis
12
dissolved oxygen
8
water quality
8
policy development
8
spatial patterns
8
movement strategies
8
movement parameters
8
changes movement
8

Similar Publications

Application of algicides produced by naturally occurring bacteria is considered an environmentally friendly approach to control harmful algal blooms. However, few studies assess the effects of bacterial algicides on non-target species, either independently or with other stressors. Here, we measured sub-lethal effects of dinoflagellate-specific algicide IRI-160AA on the estuarine fish Fundulus heteroclitus and Menidia menidia in laboratory experiments.

View Article and Find Full Text PDF

Metabolic characteristics involved in the tolerance of bivalves to marine hypoxia: Verification by inter-and intraspecific comparisons of species with different hypoxia tolerance.

Mar Pollut Bull

December 2024

Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan; Estuary Research Center, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan.

Bivalves survive exposure to hypoxic water through anaerobic metabolism. However, the characteristics of anaerobic metabolism that determine the differences in hypoxic tolerance observed between and within species remain unclear. In this study, we examined three species belonging to the superfamily Arcoidea (Anadara kagoshimensis, Tegillarca granosa, and Estellacar olivacea) with differences in hypoxia tolerance as well as one species (A.

View Article and Find Full Text PDF

Long-term trends in summer hypoxia and associated driving factors in the Pearl River Estuary, China.

Mar Pollut Bull

December 2024

School of Marine Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China. Electronic address:

In this study, we collected in situ water quality data during the summer months from 1985 to 2021 and surface sediment organic carbon and stable carbon isotope (δC) data from 2002 and 2020 in the Pearl River Estuary (PRE), to analyze long-term trends in hypoxia and explore changes in deoxygenation processes and their potential drivers. Our results showed that hypoxic events in the PRE transitioned from episodic in Lingdingyang Bay in the 2000s to periodic in the lower estuary by the late 2010s. During this transition, the dominant deoxygenation processes shifted from being caused by terrestrial and wastewater emissions to eutrophication.

View Article and Find Full Text PDF

Sediment contamination in two German estuaries: A biomarker-based toxicity test with the ragworm Hediste diversicolor under intermittent oxygenation.

Environ Res

January 2025

Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.

Toxicity testing is an important tool for risk assessment of sediment contamination in estuaries. However, there has been a predominant focus on fitness parameters as toxic endpoints and on crustaceans as test organisms, while effects at the sub-organismal level and on other benthic taxa have received less attention. Also, interactions between sediment contamination and natural stressors such as oxygen are often neglected in traditional toxicity tests.

View Article and Find Full Text PDF

Coastal marine and estuarine systems are subject to enormous endogenous and exogenous pressures, particularly climate change, while at the same time being highly productive sources and nurseries for fish populations. Interactions between host and microbiome are increasingly recognized for their importance for fish health, with growing evidence indicating that increasing environmental pressures impact host resilience and favor the raise of opportunistic bacterial taxa. The microbial composition of the gill mucus reflects environmental conditions and represents an entry route for pathogens into the fish body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!