Reconstructing the reflectivity of liquid surfaces from grazing incidence X-ray off-specular scattering data.

J Appl Crystallogr

National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA.

Published: June 2024

The capillary wave model of a liquid surface predicts both the X-ray specular reflection and the diffuse scattering around it. A quantitative method is presented to obtain the X-ray reflectivity (XRR) from a liquid surface through the diffuse scattering data around the specular reflection measured using a grazing incidence X-ray off-specular scattering (GIXOS) geometry at a fixed horizontal offset angle with respect to the plane of incidence. With this approach the entire -dependent reflectivity profile can be obtained at a single, fixed incident angle. This permits a much faster acquisition of the profile than with conventional reflectometry, where the incident angle must be scanned point by point to obtain a -dependent profile. The XRR derived from the GIXOS-measured diffuse scattering, referred to in this paper as pseudo-reflectivity, provides a larger range compared with the reflectivity measured by conventional reflectometry. Transforming the GIXOS-measured diffuse scattering profile to pseudo-XRR opens up the GIXOS method to widely available specular XRR analysis software tools. Here the GIXOS-derived pseudo-XRR is compared with the XRR measured by specular reflectometry from two simple vapor-liquid interfaces at different surface tension, and from a hexadecyltri-methyl-ammonium bromide monolayer on a water surface. For the simple liquids, excellent agreement (beyond 11 orders of magnitude in signal) is found between the two methods, supporting the approach of using GIXOS-measured diffuse scattering to derive reflectivities. Pseudo-XRR obtained at different horizontal offset angles with respect to the plane of incidence yields indistinguishable results, and this supports the robustness of the GIXOS-XRR approach. The pseudo-XRR method can be extended to soft thin films on a liquid surface, and criteria are established for the applicability of the approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151673PMC
http://dx.doi.org/10.1107/S1600576724002887DOI Listing

Publication Analysis

Top Keywords

diffuse scattering
20
liquid surface
12
gixos-measured diffuse
12
grazing incidence
8
incidence x-ray
8
x-ray off-specular
8
off-specular scattering
8
scattering data
8
specular reflection
8
horizontal offset
8

Similar Publications

Schizophyllan (SPG) is a semi-flexible, triple-helical polysaccharide with attractive properties as an efficient viscosifying compound and biological response modifier. We report microrheological characterization of schizophyllan as dispersed in solution and the changes associated when crosslinked with chitosan over an extended frequency range using diffusing wave spectroscopy (DWS). A SPG with high molecular weight (M = 1.

View Article and Find Full Text PDF

The rapid advancement of covalent organic frameworks (COFs) in recent years has firmly established them as a new class of molecularly precise and highly tuneable porous materials. However, compared to other porous materials, such as zeolites and metal-organic frameworks, the successful integration of hierarchical porosity into COFs remains largely unexplored. The challenge lies in identifying appropriate synthetic methods to introduce secondary pores without compromising the intrinsic structural porosity of COFs.

View Article and Find Full Text PDF

On-Chip Stimulated Raman Scattering Imaging and Quantification of Molecular Diffusion in Aqueous Microfluidics.

Anal Chem

January 2025

State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.

Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.

View Article and Find Full Text PDF

The rise in the popularity of lipid nanoparticle (LNP)-based formulations necessitates the need for screening tools to quickly predict their colloidal stability in the presence of common excipients. Protein chemists have employed the diffusion interaction parameter () determined using dynamic light scattering as an indicator of formulation stability, yet this approach has not been applied to particulate systems. Herein, measurements of LNPs revealed behavior dissimilar to that of proteins.

View Article and Find Full Text PDF

Selective production of olefins from methanol over a heteroatomic SAPO-34 zeolite.

Sci Bull (Beijing)

January 2025

Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China. Electronic address:

The methanol-to-olefins (MTO) process has the potential to bridge future gaps in the supply of sustainable lower olefins. Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions. Here, we report a novel heteroatomic silicoaluminophosphate (SAPO) zeolite, SAPO-34-Ta, which incorporates active tantalum(V) sites within the framework to afford an optimal distribution of acidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!