Background: A high proportion of coronary microvascular dysfunction (CMD) has been observed in patients with acute myocardial infarction (AMI) who have received primary percutaneous coronary intervention (PCI), which may affect their prognosis. This study used cadmium zinc telluride (CZT) single photon emission computed tomography (SPECT) to evaluate the prevalence and characteristics of CMD and myocardial area at risk (AAR) in AMI patients who had undergone primary PCI.

Methods: We conducted a single-center cross-sectional retrospective study at TEDA International Cardiovascular Hospital from September 2021 to June 2022. A total of 83 patients received primary PCI for AMI. Subsequently, a rest/stress dynamic and routine gated myocardial perfusion imaging (MPI) were performed 1 week after PCI. The CMD group was defined as having a residual stenosis of infarct-related artery (IRA) <50% and myocardial flow reserve (MFR) <2.0 in this corresponding territory, whereas MFR ≥2.0 of IRA pertained to the normal control group. Rest-AAR of infarction (%) and stress-AAR (%) were expressed by the percentage of measured rest-defect-size and stress-defect-size in the left ventricular area, respectively. Logistic regression analyses were performed to identify significant predictors of CMD.

Results: A total of 53 patients with a mean age of 57.06±11.99 years were recruited, of whom 81.1% were ST-segment elevation myocardial infarction (STEMI). The proportion of patients with CMD was 79.2% (42/53). The time of pain to SPECT imaging was 7.50±1.27 days in the CMD group and 7.45±1.86 days among controls. CMD patients had a higher body mass index (BMI) than controls (26.48±3.26 . 24.36±2.73 kg/m, P=0.053), and a higher proportion of STEMI, thrombolysis in myocardial infarction (TIMI) 0 grade of IRA prior PCI than controls (88.1% . 54.5%, P=0.011; 61.9% . 18.2%, P=0.004, respectively). No significant difference was identified in the rest-myocardial blood flow (MBF) of IRA between the 2 groups, whereas the stress-MBF and MFR of IRA, rest-AAR, and stress-AAR in the CMD group were remarkably lowered. Higher BMI [odds ratio (OR): 1.332, 95% confidence interval (CI): 1.008-1.760, P=0.044] and stress-AAR (OR: 1.994, 95% CI: 1.122-3.543, P=0.019) were used as independent predictors of CMD occurrence.

Conclusions: The prevalence of CMD is high in AMI patients who received primary PCI. Each 1 kg/m increase in BMI was associated with a 1.3-fold increase in CMD risk. A 5% increase in stress-AAR was associated with a nearly 2-fold increase in CMD risk. Increased BMI and stress-AAR predicts decreased coronary reserve function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151247PMC
http://dx.doi.org/10.21037/qims-23-1260DOI Listing

Publication Analysis

Top Keywords

coronary microvascular
8
microvascular dysfunction
8
myocardial area
8
area risk
8
cadmium zinc
8
zinc telluride
8
single photon
8
photon emission
8
emission computed
8
computed tomography
8

Similar Publications

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Regulation of gene expression in eukaryotic cells is critical for cell survival, proliferation, and cell fate determination. Misregulation of gene expression can have substantial, negative consequences that result in disease or tissue dysfunction that can be targeted for therapeutic intervention. Several strategies to inhibit gene expression at the level of mRNA transcription and translation have been developed, such as anti-sense inhibition and CRISPR-Cas9 gene editing.

View Article and Find Full Text PDF

Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.

View Article and Find Full Text PDF

Arachidonic acid synergizes with aspirin preventing myocardial ischemia-reperfusion injury and mitigates bleeding risk.

Cardiovasc Res

January 2025

State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Aims: The therapeutic efficacy of coronary revascularization is compromised by myocardial ischemia-reperfusion (MI/R) injury. Higher levels of circulating arachidonic acid (AA) are reportedly associated with lower risk of cardiovascular disease. The cyclooxygenase (COX) pathway metabolizes AA into prostaglandins (PGs) and the platelet-activating thromboxane A2 (TXA2), which is inhibited by aspirin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!