Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: With the advancement of artificial intelligence technology and radiomics analysis, opportunistic prediction of osteoporosis with computed tomography (CT) is a new paradigm in osteoporosis screening. This study aimed to assess the diagnostic performance of osteoporosis prediction by the combination of autosegmentation of the proximal femur and machine learning analysis with a reference standard of dual-energy X-ray absorptiometry (DXA).
Methods: Abdomen-pelvic CT scans were retrospectively analyzed from 1,122 patients who received both DXA and abdomen-pelvic computed tomography (APCT) scan from January 2018 to December 2020. The study cohort consisted of a training cohort and a temporal validation cohort. The left proximal femur was automatically segmented, and a prediction model was built by machine-learning analysis using a random forest (RF) analysis and 854 PyRadiomics features. The technical success rate of autosegmentation, diagnostic test, area under the receiver operator characteristics curve (AUC), and precision recall curve (AUC-PR) analysis were used to analyze the training and validation cohorts.
Results: The osteoporosis prevalence of the training and validation cohorts was 24.5%, and 10.3%, respectively. The technical success rate of autosegmentation of the proximal femur was 99.7%. In the diagnostic test, the training and validation cohorts showed 78.4% 63.3% sensitivity, 89.4% 98.1% specificity. The prediction performance to identify osteoporosis within the groups used for training and validation cohort was high and the AUC and AUC-PR to forecast the occurrence of osteoporosis within the training and validation cohorts were 90.8% [95% confidence interval (CI), 88.4-93.2%] 78.0% (95% CI, 76.0-79.9%) and 94.6% (95% CI, 89.3-99.8%) 88.8% (95% CI, 86.2-91.5%), respectively.
Conclusions: The osteoporosis prediction model using autosegmentation of proximal femur and machine-learning analysis with PyRadiomics features on APCT showed excellent diagnostic feasibility and technical success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151236 | PMC |
http://dx.doi.org/10.21037/qims-23-1751 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!