Fibroblast growth factors (FGF) are a type of cell signaling proteins that are mostly produced by macrophages. They are essential for a variety of biological activities involved in normal development. Fibroblast growth factor 23 (FGF23) is the newest and youngest member of the FGF endocrine subfamily, along with fibroblast growth factor 19 (FGF19) and fibroblast growth factor 21 (FGF21). In this study, we conduct a systematic review of all known literature to identify the risk of elevated FGF23 in the cardiovascular system. The analysis includes the risk of cardiovascular disease for both primary and secondary causes of elevated FGF23, such as chronic renal insufficiency. This systematic literature review adhered to the Preferred Reporting Items and Meta-Analysis (PRISMA) standards. A total of 4,793 records were identified across different databases. After that, 273 records were retrieved and reviewed. After carefully examining the titles and summaries of each report, 249 additional entries were eliminated. About 24 studies from the remaining records were chosen by primary and secondary authors for screening, and they performed a quality assessment using common quality check tools. Finally, this review included 11 studies. Following a thorough analysis, we came to the conclusion that FGF23 can be regarded as a novel biomarker and should be included in the group of heart biomarkers that have already been identified, such as B-type natriuretic peptide (BNP), for the early identification of a variety of highly prevalent cardiovascular disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154075PMC
http://dx.doi.org/10.7759/cureus.59820DOI Listing

Publication Analysis

Top Keywords

fibroblast growth
20
growth factor
16
factor fgf23
8
cardiovascular system
8
systematic literature
8
primary secondary
8
fibroblast
5
growth
5
impact elevated
4
elevated fibroblast
4

Similar Publications

Cutaneous leishmaniasis (CL) is a tropical disease that can cause chronic lesions and leave life-long scars, leading to social stigmatization and psychological disorders. Using growth factors and immunomodulatory agents that could accelerate wound healing and reduce the scar is highly demanded. Epidermal growth factor (EGF) plays an essential role in wound healing.

View Article and Find Full Text PDF

CircZMYM2 Alleviates TGF-β1-Induced Proliferation, Migration and Activation of Fibroblasts via Targeting miR-199b-5p/KLF13 Axis.

Appl Biochem Biotechnol

January 2025

Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.

Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.

View Article and Find Full Text PDF

Background: Heart failure (HF) is a significant cause of death among patients with chronic kidney disease (CKD). Emerging data suggest a crucial role of fibroblast growth factor 23 (FGF23) in the pathogenesis of HF in CKD patients. The present study aimed to investigate whether the serum intact FGF23 (iFGF23) level is elevated when ejection fraction (EF) is preserved and to evaluate its predictive value for incident HF and cardiac mortality in CKD patients with preserved EF.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!