Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale And Objectives: Lymphovascular invasion (LVI) plays a significant role in precise treatments of non-small cell lung cancer (NSCLC). This study aims to build a non-invasive LVI prediction diagnosis model by combining preoperative CT images with deep learning technology.
Materials And Methods: This retrospective observational study included a series of consecutive patients who underwent surgical resection for non-small cell lung cancer (NSCLC) and received pathologically confirmed diagnoses. The cohort was randomly divided into a training group comprising 70 % of the patients and a validation group comprising the remaining 30 %. Four distinct deep convolutional neural network (DCNN) prediction models were developed, incorporating different combination of two-dimensional (2D) and three-dimensional (3D) CT imaging features as well as clinical-radiological data. The predictive capabilities of the models were evaluated by receiver operating characteristic curves (AUC) values and confusion matrices. The Delong test was utilized to compare the predictive performance among the different models.
Results: A total of 3034 patients with NSCLC were recruited in this study including 106 LVI+ patients. In the validation cohort, the Dual-head Res2Net_3D23F model achieved the highest AUC of 0.869, closely followed by the models of Dual-head Res2Net_3D3F (AUC, 0.868), Dual-head Res2Net_3D (AUC, 0.867), and EfficientNet-B0_2D (AUC, 0.857). There was no significant difference observed in the performance of the EfficientNet-B0_2D model when compared to the Dual-head Res2Net_3D3F and Dual-head Res2Net_3D23F.
Conclusion: Findings of this study suggest that utilizing deep convolutional neural network is a feasible approach for predicting pathological LVI in patients with NSCLC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2024.05.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!