The biological interplay between phages and bacteria has driven the evolution of phage anti-defence systems (ADSs), which evade bacterial defence mechanisms. These ADSs bind and inhibit host defence proteins, add covalent modifications and deactivate defence proteins, degrade or sequester signalling molecules utilised by host defence systems, synthesise and restore essential molecules depleted by bacterial defences, or add covalent modifications to phage molecules to avoid recognition. Overall, 145 phage ADSs have been characterised to date. These ADSs counteract 27 of the 152 different bacterial defence families, and we hypothesise that many more ADSs are yet to be discovered. We discuss high-throughput approaches (computational and experimental) which are indispensable for discovering new ADSs and the limitations of these approaches. A comprehensive characterisation of phage ADSs is critical for understanding phage-host interplay and developing clinical applications, such as treatment for multidrug-resistant bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tim.2024.05.005 | DOI Listing |
Nature
November 2024
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
Prokaryotic anti-phage immune systems use TIR and cGAS-like enzymes to produce 1''-3'-glycocyclic ADP-ribose (1''-3'-gcADPR) and cyclic dinucleotide (CDN) and cyclic trinucleotide (CTN) signalling molecules, respectively, which limit phage replication. However, how phages neutralize these distinct and common systems is largely unclear. Here we show that the Thoeris anti-defence proteins Tad1 and Tad2 both achieve anti-cyclic-oligonucleotide-based anti-phage signalling system (anti-CBASS) activity by simultaneously sequestering CBASS cyclic oligonucleotides.
View Article and Find Full Text PDFNature
October 2024
Department of Microbiology, University of Washington, Seattle, WA, USA.
Prokaryotic CRISPR-Cas immunity is subverted by anti-CRISPRs (Acrs), which inhibit Cas protein activities when expressed during the phage lytic cycle or from resident prophages or plasmids. Acrs often bind to specific cognate Cas proteins, and hence inhibition is typically limited to a single CRISPR-Cas subtype. Furthermore, although acr genes are frequently organized together in phage-associated gene clusters, how such inhibitors initially evolve has remained unclear.
View Article and Find Full Text PDFTrends Microbiol
December 2024
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. Electronic address:
The biological interplay between phages and bacteria has driven the evolution of phage anti-defence systems (ADSs), which evade bacterial defence mechanisms. These ADSs bind and inhibit host defence proteins, add covalent modifications and deactivate defence proteins, degrade or sequester signalling molecules utilised by host defence systems, synthesise and restore essential molecules depleted by bacterial defences, or add covalent modifications to phage molecules to avoid recognition. Overall, 145 phage ADSs have been characterised to date.
View Article and Find Full Text PDFNature
January 2024
Department of Microbiology, Harvard Medical School, Boston, MA, USA.
Bacteria encode hundreds of diverse defence systems that protect them from viral infection and inhibit phage propagation. Gabija is one of the most prevalent anti-phage defence systems, occurring in more than 15% of all sequenced bacterial and archaeal genomes, but the molecular basis of how Gabija defends cells from viral infection remains poorly understood. Here we use X-ray crystallography and cryo-electron microscopy (cryo-EM) to define how Gabija proteins assemble into a supramolecular complex of around 500 kDa that degrades phage DNA.
View Article and Find Full Text PDFNature
January 2024
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
It was recently shown that bacteria use, apart from CRISPR-Cas and restriction systems, a considerable diversity of phage resistance systems, but it is largely unknown how phages cope with this multilayered bacterial immunity. Here we analysed groups of closely related Bacillus phages that showed differential sensitivity to bacterial defence systems, and discovered four distinct families of anti-defence proteins that inhibit the Gabija, Thoeris and Hachiman systems. We show that these proteins Gad1, Gad2, Tad2 and Had1 efficiently cancel the defensive activity when co-expressed with the respective defence system or introduced into phage genomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!