Tatton-Brown-Rahman syndrome (TBRS) is a rare congenital genetic disorder caused by autosomal dominant pathogenic variants in the DNA methyltransferase DNMT3A gene. Typical TBRS clinical features are overgrowth, intellectual disability, and minor facial anomalies. However, since the syndrome was first described in 2014, a widening spectrum of abnormalities is being described. Cardiovascular abnormalities are less commonly reported but can be a major complication of the syndrome. This article describes a family of three individuals diagnosed with TBRS in adulthood and highlights the variable expression of cardiovascular features. A 34-year-old proband presented with progressive aortic dilatation, mitral valve (MV) regurgitation, left ventricular (LV) dilatation, and ventricular arrhythmias. The affected family members (mother and brother) were diagnosed with MV regurgitation, LV dilatation, and arrhythmias. Exome sequencing and computational protein analysis suggested that the novel familial DNMT3A mutation Ser775Tyr is located in the methyltransferase domain, however, distant from the active site or DNA-binding loops. Nevertheless, this bulky substitution may have a significant effect on DNMT3A protein structure, dynamics, and function. Analysis of peripheral blood cfDNA and transcriptome showed shortened mononucleosome fragments and altered gene expression in a number of genes related to cardiovascular health and of yet undescribed function, including several lncRNAs. This highlights the importance of epigenetic regulation by DNMT3A on cardiovascular system development and function. From the clinical perspective, we suggest that new patients diagnosed with congenital DNMT3A variants and TBRS require close examination and follow-up for aortic dilatation and valvular disease because these conditions can progress rapidly. Moreover, personalized treatments, based on the specific DNMT3A variants and the different pathways of their function loss, can be envisioned in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157947PMC
http://dx.doi.org/10.1186/s13148-024-01686-yDOI Listing

Publication Analysis

Top Keywords

dnmt3a gene
8
tatton-brown-rahman syndrome
8
aortic dilatation
8
dnmt3a variants
8
dnmt3a
7
aortic disease
4
disease cardiomyopathy
4
cardiomyopathy patients
4
patients novel
4
novel dnmt3a
4

Similar Publications

Disrupted methionine cycle triggers muscle atrophy in cancer cachexia through epigenetic regulation of REDD1.

Cell Metab

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China. Electronic address:

The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle during cancer cachexia, leading to endoplasmic reticulum stress and DNA hypomethylation-induced expression of the DNA damage inducible transcript 4 (Ddit4) gene, encoding the regulated in development and DNA damage response 1 (REDD1) protein. Targeting DNA methylation by depletion or pharmacological inhibition of DNA methyltransferase 3A (DNMT3A) exacerbates cachexia, while restoring DNMT3A expression or REDD1 knockout alleviates cancer cachexia-induced skeletal muscle atrophy in mice.

View Article and Find Full Text PDF

Myeloproliferative neoplasms (MPNs) are clonal hematopoietic cancers characterized by hyperproliferation of the myeloid lineages. These clonal marrow disorders are extremely rare in pediatric patients. MPN is reported to occur 100 times more frequently in adults, and thus research is primarily focused on this patient group.

View Article and Find Full Text PDF

DNMT3a Downregulation Ttriggered Upregulation of GABA Receptor in the mPFC Promotes Paclitaxel-Induced Pain and Anxiety in Male Mice.

Adv Sci (Weinh)

December 2024

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.

Chemotherapeutic agents, such as paclitaxel (PTX), induce neuroplastic changes and alter gene expression in the prefrontal cortex (PFC), which may be associated with chemotherapy-induced pain and negative emotions. Notably, DNA methylation undergoes adaptive changes in neurological disorders, emerging as a promising target for neuromodulation. In this study, systemic administration of PTX leads to a decrease in the expression of the DNA methyltransferase DNMT3a, while concurrently upregulating the expression of Gabrb1 mRNA and its encoded GABARβ1 protein in the medial PFC (mPFC) of male mice.

View Article and Find Full Text PDF

Clonal hematopoiesis of indeterminate potential is a risk factor of gastric cancer: A Prospective Cohort in UK Biobank study.

Transl Oncol

December 2024

School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China. Electronic address:

Importance: Gastric cancer is often diagnosed at an advanced stage and at order age, identification of high-risk population is needed for detection of early-stage gastric cancer.

Objective: To examine whether clonal hematopoiesis of indeterminate potential (CHIP) is a risk factor of gastric cancer.

Design: This cohort study used data from the UK Biobank collected from baseline (2006-2010) to the end of follow-up in March 2024.

View Article and Find Full Text PDF

Clonal hematopoiesis of indeterminate potential (CHIP): A potential contributor to lymphoma.

Crit Rev Oncol Hematol

December 2024

Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China. Electronic address:

Clonal hematopoiesis (CH) typically refers to the clonal expansion of hematopoietic stem cells (HSCs) due to genetic mutations, serving as the pathogenic basis for various diseases. Clonal hematopoiesis of indeterminate potential (CHIP) is a subtype of CH, emerging as a significant risk factor for myeloid malignancies and cardiovascular diseases, which has attracted increasing attention. However, recent research has unveiled previously overlooked links between CHIP and lymphoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!