Atomic clocks with higher frequency stability and accuracy than traditional space-borne atomic clocks are the cornerstone of long-term autonomous operation of space-time-frequency systems. We proposed a space cold atoms clock based on an intracavity cooling scheme, which captures cold atoms at the center of a microwave cavity and then executes in situ interactions between the cold atoms and microwaves. As a result of the microgravity environment in space, the cold atoms can interact with the microwaves for a longer time, which aids in realizing a high-precision atomic clock in space. This paper presents the overall design, operational characteristics, and reliability test results of the space atomic clock based on the intracavity cooling scheme designed for the operation onboard the China space station. In addition, the engineering prototype performance of the space cold atoms microwave clock is also presented. The ground test results for the clock show a fractional frequency stability of 1.1 × 10 τ reaching 2.5 × 10 at 200,000 s, providing solid technical and data support for its future operation in orbit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156933 | PMC |
http://dx.doi.org/10.1038/s41526-024-00407-2 | DOI Listing |
Phys Rev Lett
December 2024
Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06200 Nice, France.
This study introduces a novel method to investigate in situ light transport within optically thick ensembles of cold atoms, exploiting the internal structure of alkaline-earth metals. A method for creating an optical excitation at the center of a large atomic cloud is demonstrated, and we observe its propagation through multiple scattering events. In conditions where the cloud size is significantly larger than the transport mean free path, a diffusive regime is identified.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics and Astronomy, and Smalley-Curl Institute, Rice University, Houston, Texas 77251-1892, USA.
The hybrid quantum system of cold atomic gas and optical cavity can host many exotic phenomena including phase transitions and multistabilities. In this Letter, we investigate the effect of photon hopping between two Dicke cavities and show rich quantum phases for steady states and dynamic processes. Starting from a generic dimer system where the two cavities are not necessarily identical, we analytically obtain all possible steady-state phases and confirm their existence by numerical calculations.
View Article and Find Full Text PDFACS Omega
December 2024
Laboratory of Atomic Spectrometry (LEA), Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil.
Mercury (Hg) determination in marine sediment is an analytical challenge due to the toxicity of this element even at low concentrations (up to 130 μg kg in marine sediments) and complex matrices. Therefore, it is necessary to use analytical techniques that have high sensitivity, selectivity, and low limits of quantification (LoQ). In this study, two methods that require sample treatment and one method with direct sampling were studied.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
In this work, the molecular enhancement factors of the P,T-odd interactions involving the electron electric dipole moment (Wd) and the scalar-pseudoscalar nucleon-electron couplings (Ws) are computed for the ground state of the bimetallic molecules YbCu, YbAg, and YbAu. These systems offer a promising avenue for creating cold molecules by associating laser-cooled atoms. The relativistic coupled-cluster approach is used in the calculations, and a thorough uncertainty analysis is performed to give accurate and reliable uncertainties to the obtained values.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea.
This study presents a method to add a crack analysis algorithm to the Acoustic Leak Monitoring System (ALMS) to detect and evaluate the crack growth process in the primary system piping of nuclear power plants. To achieve this, a fracture test was conducted by applying stepwise loading to welded specimens that simulate the cold leg section, and acoustic emission (AE) signals were measured in relation to the increase in strain using an AE testing system. The experimental results indicated that the stability and instability of cracks could be assessed through the Kaiser effect and the Felicity effect when detecting crack growth using AE signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!