Green products such as plant tints are becoming more and more well-known worldwide due to their superior biological and ayurvedic properties. In this work, colorant from Amba Haldi (Curcuma aromatica) was isolated using microwave (MW), and bio-mordants were added to produce colorfast shades. Response surface methodology was used to develop a central composite design (CCD), which maximizes coloring variables statistically. The findings from 32 series of experiments show that excellent color depth (K/S = 12.595) was established onto MW-treated silk fabric (RS = 4 min) by employing 65 mL of radiated aqueous extract (RE = 4 min) of 5 pH cutting-edge the existence of 1.5 g/100 mL used sodium chloride at 75 °C for 45 min. It was discovered that acacia (keekar) extract (1%), pomegranate extract (2%), and pistachio extract (1.5%) were present before coloring by the use of bio-mordants. On the other hand, upon dyeing, acacia extract (1.5%), pomegranate extract (1.5%), and pistachio extract (2%) have all shown extremely strong colorfast colors. Comparatively, before dyeing, salts of Al (1.5%), Fe (2%), and TA (1.5%) gave good results; after dyeing, salts of Al (1%) and Fe (1.5%) and TA (2%) gave good results. When applied to silk fabric, MW radiation has increased the production of dyes recovered from rhizomes. Additionally, the right amount of chemical and biological mordants have been added, resulting in color fastness ratings ranging from outstanding to good. Therefore, the natural color extracted from Amba Haldi can be a sustainable option for the dyeing of silk fabric in the textile dyeing and finishing industries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156858PMC
http://dx.doi.org/10.1038/s41598-024-63927-7DOI Listing

Publication Analysis

Top Keywords

silk fabric
12
extract 15%
12
curcuma aromatica
8
amba haldi
8
pomegranate extract
8
pistachio extract
8
dyeing salts
8
salts 15%
8
15% good
8
extract
7

Similar Publications

The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.

View Article and Find Full Text PDF

Self-healing PVA/Chitosan/MXene triple network hydrogel for strain and temperature sensors.

Int J Biol Macromol

December 2024

College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China. Electronic address:

Conductive hydrogels have attracted intensive attention for their promising applications in flexible electronics, sensors, and electronic skins. However, extremely poor adaptability under cold or dry environmental conditions along with inferior repairability seriously hinders the development of hydrogels in wearable electronics. Here, a triple network conductive hydrogel (PBCP-MXene) was prepared by proportionally mixing polyvinyl alcohol (PVA), borax, chitosan (CS), phytic acid (PA), and MXene.

View Article and Find Full Text PDF

Reliable point-of-care (POC) detection of the specific biomarkers responsible for different diseases is crucial for health monitoring. For the routine detection of important biomarkers, rapid, precise, and cost-effective analytical techniques are more and more in demand. Cardiovascular diseases like hypertension, myocardial infarction, and stroke can occur due to high cholesterol levels.

View Article and Find Full Text PDF
Article Synopsis
  • * The article discusses methods to analyze how these scaffolds interact with cells, focusing on how they degrade and how cell growth (biomass) can be measured through various metrics like cell weight and extracellular matrix (ECM) deposition.
  • * It presents detailed protocols for creating silk fiber scaffolds, cultivating specific mouse cells (C2C12), and monitoring key parameters, contributing to the development of more efficient cellular agriculture techniques.
View Article and Find Full Text PDF

The upcoming era of flexible and wearable electronics necessitates the development of low-cost, flexible, biocompatible substrates amenable to the fabrication of active devices such as electronic devices, sensors and transducers. While natural biopolymers such as Silk are robust and biocompatible, long-term flexibility is a concern due to the inherent brittle nature of soft Silk thin films. This work elucidates the preparation and characterization of Silk-polyurethane (Silk-PU) composite film that provides long-duration flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!