Spatially resolved transcriptomics (SRT) studies are becoming increasingly common and large, offering unprecedented opportunities in mapping complex tissue structures and functions. Here we present integrative and reference-informed tissue segmentation (IRIS), a computational method designed to characterize tissue spatial organization in SRT studies through accurately and efficiently detecting spatial domains. IRIS uniquely leverages single-cell RNA sequencing data for reference-informed detection of biologically interpretable spatial domains, integrating multiple SRT slices while explicitly considering correlations both within and across slices. We demonstrate the advantages of IRIS through in-depth analysis of six SRT datasets encompassing diverse technologies, tissues, species and resolutions. In these applications, IRIS achieves substantial accuracy gains (39-1,083%) and speed improvements (4.6-666.0) in moderate-sized datasets, while representing the only method applicable for large datasets including Stereo-seq and 10x Xenium. As a result, IRIS reveals intricate brain structures, uncovers tumor microenvironment heterogeneity and detects structural changes in diabetes-affected testis, all with exceptional speed and accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41592-024-02284-9DOI Listing

Publication Analysis

Top Keywords

integrative reference-informed
8
srt studies
8
spatial domains
8
spatial
5
iris
5
accurate efficient
4
efficient integrative
4
reference-informed spatial
4
spatial domain
4
domain detection
4

Similar Publications

Alternative splicing plays a crucial role in protein diversity and gene expression regulation in higher eukaryotes, and mutations causing dysregulated splicing underlie a range of genetic diseases. Computational prediction of alternative splicing from genomic sequences not only provides insight into gene-regulatory mechanisms but also helps identify disease-causing mutations and drug targets. However, the current methods for the quantitative prediction of splice site usage still have limited accuracy.

View Article and Find Full Text PDF

Spatially resolved transcriptomics (SRT) studies are becoming increasingly common and large, offering unprecedented opportunities in mapping complex tissue structures and functions. Here we present integrative and reference-informed tissue segmentation (IRIS), a computational method designed to characterize tissue spatial organization in SRT studies through accurately and efficiently detecting spatial domains. IRIS uniquely leverages single-cell RNA sequencing data for reference-informed detection of biologically interpretable spatial domains, integrating multiple SRT slices while explicitly considering correlations both within and across slices.

View Article and Find Full Text PDF

Spatial Dynamic Subspaces Encode Sex-Specific Schizophrenia Disruptions in Transient Network Overlap and Their Links to Genetic Risk.

Biol Psychiatry

August 2024

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Atlanta, Georgia; Department of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia. Electronic address:

Background: Schizophrenia research reveals sex differences in incidence, symptoms, genetic risk factors, and brain function. However, a knowledge gap remains regarding sex-specific schizophrenia alterations in brain function. Schizophrenia is considered a dysconnectivity syndrome, but the dynamic integration and segregation of brain networks are poorly understood.

View Article and Find Full Text PDF

Background: Recent advances in resting-state fMRI allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. However, most dynamic studies still use subject-specific, spatially-static nodes. As recent studies have demonstrated, incorporating time-resolved spatial properties is crucial for precise functional connectivity estimation and gaining unique insights into brain function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!