Suppressed Lattice Thermal Conductivity in Haeckelite Compounds for High-Performance Thermoelectric Applications.

J Phys Chem Lett

Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, and School of Materials Science and Engineering, Henan University, Kaifeng, Henan 475001, China.

Published: June 2024

Traditional semiconductors are known to exhibit excellent electrical properties but oversized lattice thermal conductivities, thus limiting their thermoelectric performance. Herein, we have discovered a low-energy allotrope of those traditional semiconductors. Compared with the wurtzite structure, the lattice thermal conductivity is reduced by more than five times in the haeckelite structure. This is attributed to the softening of acoustic phonon modes and concurrently enhanced anharmonicity in the haeckelite structure. Benefiting from the suppressed lattice thermal conductivity while retaining the excellent electrical properties of wurtzite structure, haeckelite compounds have been proven to be a novel category of high-performance thermoelectric materials. As an excellent representative, haeckelite CdTe exhibits a peak figure of merit approaching 1.3 at -type doping and high temperature, which experiences a 3-fold improvement compared with its wurtzite counterpart. This work provides an alternative pathway of engineering the lattice thermal conductivities of traditional semiconductors toward superior thermoelectric properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01095DOI Listing

Publication Analysis

Top Keywords

lattice thermal
20
thermal conductivity
12
traditional semiconductors
12
suppressed lattice
8
haeckelite compounds
8
high-performance thermoelectric
8
excellent electrical
8
electrical properties
8
thermal conductivities
8
compared wurtzite
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!