The consumption of Δ-tetrahydrocannabinol (THC)- or cannabis-containing edibles has increased in recent years; however, the behavioral and neural circuit effects of such consumption remain unknown, especially in the context of ingestion of higher doses resulting in cannabis intoxication. We examined the neural and behavioral effects of acute high-dose edible cannabis consumption (AHDECC). Sprague-Dawley rats (six males, seven females) were implanted with electrodes in the prefrontal cortex (PFC), dorsal hippocampus (dHipp), cingulate cortex (Cg), and nucleus accumbens (NAc). Rats were provided access to a mixture of Nutella (6 g/kg) and THC-containing cannabis oil (20 mg/kg) for 10 minutes, during which they voluntarily consumed all of the provided Nutella and THC mixture. Cannabis tetrad and neural oscillations were examined 2, 4, 8, and 24 hours after exposure. In another cohort (16 males, 15 females), we examined the effects of AHDECC on learning and prepulse inhibition and serum and brain THC and 11-hydroxy-THC concentrations. AHDECC resulted in higher brain and serum THC and 11-hydroxy-THC levels in female rats over 24 hours. AHDECC also produced: 1) Cg, dHipp, and NAc gamma power suppression, with the suppression being greater in female rats, in a time-dependent manner; 2) hypolocomotion, hypothermia, and antinociception in a time-dependent manner; and 3) learning and prepulse inhibition impairments. Additionally, most neural activity and behavior changes appear 2 hours after ingestion, suggesting that interventions around this time might be effective in reversing/reducing the effects of AHDECC. SIGNIFICANCE STATEMENT: The effects of high-dose edible cannabis on behavior and neural circuitry are poorly understood. We found that the effects of acute high-dose edible cannabis consumption (AHDECC), which include decreased gamma power, hypothermia, hypolocomotion, analgesia, and learning and information processing impairments, are time and sex dependent. Moreover, these effects begin 2 hours after AHDECC and last for at least 24 hours, suggesting that treatments should target this time window in order to be effective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.123.001987 | DOI Listing |
Nutrients
October 2024
School of Life Sciences, Jilin University, Changchun 130012, China.
Int J Mol Sci
October 2024
Department of Public Health, Kagawa University Faculty of Medicine, Kagawa 761-0793, Japan.
, known as Aonori in Japan, is an edible alga species that is mass-cultivated in Japan. Supplementation with Aonori-derived biomaterials has been reported to enhance metabolic health in previous studies. This was an experimental study that evaluated the metabolic health effects of NBF2, a formula made of algal and -derived biomaterials, on obesity and type 2 diabetes (T2DM).
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China. Electronic address:
Ethnopharmacological Relevance: Codonopsis Pilosula (CP), as a well-known traditional Chinese medicine (TCM) with medicinal and edible herb, is one of the most representative tonic Chinese herbal medicine. It has been widely used for regulating immune function with hardly any adverse effects in clinical practice.
Aim Of The Study: This study aimed to elucidate the immunomodulatory effect and to explore probable mechanism of Codonopsis Pilosula Extract (CPE) in septic rats.
Eur J Nutr
December 2024
Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!