Development of the Fetal Brain Corticocortical Structural Network during the Second-to-Third Trimester Based on Diffusion MRI.

J Neurosci

Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, P. R. China

Published: July 2024

During the second-to-third trimester, the neuronal pathways of the fetal brain experience rapid development, resulting in the complex architecture of the interwired network at birth. While diffusion MRI-based tractography has been employed to study the prenatal development of structural connectivity network (SCN) in preterm neonatal and postmortem fetal brains, the in utero development of SCN in the normal fetal brain remains largely unknown. In this study, we utilized in utero dMRI data from human fetuses of both sexes between 26 and 38 gestational weeks to investigate the developmental trajectories of the fetal brain SCN, focusing on intrahemispheric connections. Our analysis revealed significant increases in global efficiency, mean local efficiency, and clustering coefficient, along with significant decrease in shortest path length, while small-worldness persisted during the studied period, revealing balanced network integration and segregation. Widespread short-ranged connectivity strengthened significantly. The nodal strength developed in a posterior-to-anterior and medial-to-lateral order, reflecting a spatiotemporal gradient in cortical network connectivity development. Moreover, we observed distinct lateralization patterns in the fetal brain SCN. Globally, there was a leftward lateralization in network efficiency, clustering coefficient, and small-worldness. The regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge, except for Wernicke's area, indicating lateralized brain wiring is an innate property of the human brain starting from the fetal period. Our findings provided a comprehensive view of the development of the fetal brain SCN and its lateralization, as a normative template that may be used to characterize atypical development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255424PMC
http://dx.doi.org/10.1523/JNEUROSCI.1567-23.2024DOI Listing

Publication Analysis

Top Keywords

fetal brain
24
brain scn
12
development fetal
8
brain
8
second-to-third trimester
8
efficiency clustering
8
clustering coefficient
8
lateralization patterns
8
development
7
fetal
7

Similar Publications

Anatomic Approach to Fetal Hydrocephalus.

Radiographics

February 2025

From the Departments of Radiology and Imaging Sciences (A.M.G., P.J.W., A.M.K.) and Obstetrics and Gynecology (S.E.D.), University of Utah Health, 30 N Mario Capecchi Dr, Salt Lake City, UT 84112; and University of Utah School of Medicine, Salt Lake City, Utah (J.N.C.).

Hydrocephalus is an imprecise term and refers to the imbalance of brain parenchyma and cerebral spinal fluid in the cranial vault. Ventriculomegaly, or enlargement of the ventricular system, is often the more precise term and is therefore preferred. Appropriate imaging and measurement techniques are critical to detect ventriculomegaly and grade its severity.

View Article and Find Full Text PDF

Alloimmunization during pregnancy occurs when a mother produces antibodies against fetal antigens, leading to complications like hemolytic disease of the fetus and newborn (HDFN) and fetal and neonatal alloimmune thrombocytopenia (FNAIT). HDFN involves destruction of fetal red blood cells, potentially causing severe anemia, hydrops fetalis, and fetal death. FNAIT affects fetal platelets and possibly endothelial cells, resulting in risk of intracranial hemorrhage and brain damage.

View Article and Find Full Text PDF

Craniosynostosis is rarely diagnosed in utero. Prenatal diagnosis has the potential to improve patient outcomes and streamline care, however, and is becoming more feasible as technology improves. The objective of this study is to examine existing literature on prenatal diagnosis of nonsyndromic craniosynostosis.

View Article and Find Full Text PDF

Fetal Tetra-Amelia Birth: A Case Report.

Case Rep Obstet Gynecol

December 2024

Department of Obstetrics and Gynecology, Jimma University School of Medicine, Jimma, Ethiopia.

Fetal limb anomaly presentation varies greatly. It can present as amelia (complete absence of skeletal part of one or more limb), meromelia (partial absence of skeletal part of one or more limb), phocomelia (only rudimentary limb formed), and minor limb disorders like polydactyly. The complete absence of the four fetal limbs is extremely rare.

View Article and Find Full Text PDF

Selective Fetal Growth Restriction Leading to Cerebral Injury in Monochorionic Twins: A Case Report.

Cureus

December 2024

Neonatology Department, Daniel de Matos Maternity, Coimbra Local Health Unit, Coimbra, PRT.

Monochorionic twin pregnancies carry a risk of perinatal complications due to shared placental anastomoses, which can cause uneven blood distribution and lead to conditions like selective fetal growth restriction (sFGR). This case describes a monochorionic pregnancy complicated by preeclampsia and late-onset sFGR of twin B. Labor was prematurely induced and a 45% weight discordance between the twins was confirmed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!