An eco-friendly adsorbent was prepared by reverse suspension crosslinking method to remove multiple pollutants from aqueous solution. Both raw materials, derived from humus (HS) and chitosan (CS), are biodegradable and low-cost natural biopolymers. After combining HS with CS, the adsorption capacity was significantly improved due to compensation effects between the two components. HS/CS exhibited the features of amphoteric adsorption through pH adjustment, enabling it to adsorb not only anionic pollutants (Methyl Orange (MO) and Cr(VI)), but also cationic ones (Methylene Blue (MB) and Pb(II)). The adsorption capacities were approximately 242 mg/g, 69 mg/g, 188 mg/g and 57 mg/g for MO, Cr(VI), MB and Pb(II), respectively. HS/CS showed a slight preference for MO in MO/Cr(VI) co-adsorption system, whereas strong selectivity for MB over Pb(II) in MB/Pb(II) system under acidic condition (pH<3.0). This selective behavior would allow for potential applications in separating MB/Pb(II) effluents and selectively recycling Pb(II) in acidic environment. The isothermal and kinetic adsorption behaviors followed Langmuir model and pseudo-second-order model, respectively. The density functional theory (DFT) confirmed that the interaction between metal ions and adsorbents was primarily attributed to chelation and electrostatic adsorption, owing to nitric and oxygenic functional groups. Whereas, the adsorption mechanisms for dyes were involved in electrostatic attraction, H-bond and π-π bond, due to available hydrogen, oxygen, nitrogen atoms and aromatic groups on the surface of adsorbent and adsorbates. The adsorbent could be efficiently regenerated and retained over 90% of its adsorption capacity after five cycles, which has a potential for practical applications in water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2023.09.004 | DOI Listing |
Chem Commun (Camb)
January 2025
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 21045, USA.
Aqueous two-phase extraction (ATPE) is an effective and scalable liquid-phase processing method for purifying single species of single-wall carbon nanotubes (SWCNTs) from multiple species mixtures. Recent metrological developments have led to advances in the speed of identifying solution parameters leading to more efficient ATPE separations with greater fidelities. In this feature article, we review these developments and discuss their vast potential to further advance SWCNT separations science towards the optimization of production scale processes and the full realization of SWCNT-enabled technologies.
View Article and Find Full Text PDFChem Sci
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (HIso-NH) afforded [MoO(μ-O)(Iso-NH)], a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma) and the other two containing diethylammonium (dea).
View Article and Find Full Text PDFGreen Chem
December 2024
KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Leuven Belgium
Direct lithium extraction (DLE) from natural surface and geothermal brines is very challenging due to the low ratio of lithium to other metals, and the lack of suitable materials that bind lithium with sufficiently high selectivity. In this paper, a synergistic solvent extraction system is described that comprises a liquid ion exchanger (saponified bis(2-ethylhexyl)dithiophosphoric acid) and a lithium-selective ligand (2,9-dibutyl-1,10-phenanthroline) in an aliphatic diluent. The extraction mechanism was investigated and was confirmed to involve the binding of lithium to the selective ligand, while the liquid ion exchanger facilitates the transfer of metal ions from the aqueous to the organic phase.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 Punjab India
In this study, a detailed DFT investigation was conducted to systematically analyze the scavenging activity of six hydrazone compounds (1-6) against HOO˙ and CHOO˙ radicals. Three mechanistic pathways were explored: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SETPT), and sequential proton loss electron transfer (SPLET). These mechanisms were evaluated based on thermodynamic parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) in the gas phase, water, and pentyl ethanoate.
View Article and Find Full Text PDFRSC Adv
January 2025
Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology New Borg El-Arab City Alexandria Egypt
We report herein a facile synthesis, characterization, and the electron transfer reaction of a novel light-harvesting material composed of laser-induced graphene (LIG) functionalized with the photoactive 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin tetra(-toluenesulfonate) dye (TTMAPP). LIG was easily fabricated on the surface of a polyimide sheet using VersaLASER 3.6 (VLS 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!