Arctic regions are extremely sensitive to global warming. Aerosols are one of the most important short-lived climate-forcing agents affecting the Arctic climate. The present study examines the summertime chemical characteristics and potential sources of various organic and inorganic aerosols at a Norwegian Arctic site, Ny-Ålesund (79°N). The results show that organic matter (OM) accounts for 60 % of the total PM mass, followed by sulfate (SO). Water-soluble organic carbon (WSOC) contributes 62 % of OC. Photochemical processes involving diverse anthropogenic and biogenic precursor compounds are identified as the major sources of WSOC, while water-insoluble organic carbon (WIOC) aerosols are predominantly linked to primary marine emissions. Despite being a remote pristine site, the aerosols show a sign of chemical aging, evidenced by a significant chloride depletion, which was about 82 % on average during the study period. Nitrogen-containing aerosols are likely stemming from migratory seabird colonies and local dust sources around the sampling site. While biogenic, crustal, and sea salt-derived SO account for 37%, 8%, and 5% respectively, the remaining 50% is attributed to anthropogenic SO. Through chemical tracers, Pearson correlation coefficient matrix, and Hierarchical Cluster Analysis (HCA), the present study identifies soil biota (terrestrial biogenic) and marine emissions, along with their photochemical oxidation processes, as potential sources of Arctic aerosols during summer, while biomass burning and combustion-related sources have a minor contribution. The chemical closure of hygroscopicity highlights that while organics predominantly control aerosol hygroscopicity in the Arctic summer, specific inorganic components like (NH)SO can significantly increase it on certain days, affecting aerosol-cloud interactions and climate processes over the Arctic during summer. The present study highlights the high abundance of organics and their vital role in the Arctic climate during summer when natural aerosols are conquered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173780DOI Listing

Publication Analysis

Top Keywords

arctic summer
12
aerosols
8
arctic
8
arctic climate
8
potential sources
8
organic carbon
8
marine emissions
8
chemical
5
summer
5
sources
5

Similar Publications

Unprecedented East Siberian wildfires intensify Arctic snow darkening through enhanced poleward transport of black carbon.

Sci Total Environ

January 2025

School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Summer Arctic black carbon (BC) predominantly originates from boreal wildfires, significantly contributing to Arctic warming. This study examined the impact of MODIS-detected extensive East Siberian wildfires from 2019 to 2021 on Arctic BC and the associated radiative effects using GEOS-Chem and SNICAR simulations. During these years, Arctic surface BC aerosol concentrations rose to 46 ng m, 43 ng m, and 59 ng m, nearly doubling levels from the low-fire year of 2022.

View Article and Find Full Text PDF

Recent rapid sea ice reduction in the Pacific sector of the Arctic Ocean is potentially associated with inflow of Pacific-origin water via the Bering Strait. For the first time, we detected remarkable subsurface warming around the Chukchi Borderland in the Arctic Ocean over the recent two decades (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Large diurnal temperature changes (DTR) in surface soils, ranging from 5°C to over 20°C, significantly impact microbial processes related to carbon and nitrogen cycling, yet are often overlooked in research.
  • The study reveals that these temperature fluctuations affect microbial respiration rates, mineralization rates, and redox potentials, leading to higher process rates compared to those observed under constant temperature conditions in laboratory settings.
  • To better understand the effects of climate change on soil processes, the authors propose a shift in research methods to incorporate natural diurnal temperature variations into modeling and laboratory studies.
View Article and Find Full Text PDF

Summer profiles: Tracing currently used organophosphorus pollutants in the surface seawater of the Arctic Ocean.

Sci Total Environ

December 2024

Ministry of Natural Resources Key Laboratory for Polar Sciences, Polar Research Institute of China, NO.451, Jinqiao Road, Shanghai, 200136, China; Zhejiang University of Water Resources and Electric Power, NO. 508, Second Avenue, Hangzhou, Zhejiang, 310018, China. Electronic address:

We investigate the spatial distribution and potential ecological impact of Currently Used Organophosphorus Pollutants (CUOPPs) in the Arctic Ocean, focusing on the East Siberian Sea, Laptev Sea, and high Arctic regions. Analyzing surface water samples collected during a scientific expedition aboard the "Xuelong 2" in August and September 2021, we detected 38 out of 83 targeted CUOPPs, including Phorate, Paraoxon, and Azinphos-ethyl, with concentrations exhibiting significant geographical variance. The results reveal a pronounced increase in CUOPP concentrations towards the Arctic poles, diverging markedly from the patterns observed in the East China Sea, thereby highlighting distinct regional pollution profiles and environmental interactions.

View Article and Find Full Text PDF

Light environment in the Arctic differs widely with the seasons. Studies of relationships between objectively measured circadian phase and amplitude of light exposure and melatonin in community-dwelling Arctic residents are lacking. This investigation combines cross-sectional (n = 24-62) and longitudinal (n = 13-27) data from week-long actigraphy (with light sensor), 24-h salivary melatonin profiles, and proxies of metabolic health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!