AI Article Synopsis

  • - Organic farming is often seen as the most sustainable, but it typically uses chemicals like copper sulphate, which can harm local wildlife.
  • - The study focused on the walking stick insect Bacillus rossius and assessed how different concentrations of copper sulphate affected their body condition, reproduction, and behavior.
  • - Results showed that high amounts of copper sulphate negatively impacted survival and reproduction traits within just 12 days, indicating that organic farming practices need to be reevaluated for their ecological effects.

Article Abstract

Organic farming is considered the most sustainable form of modern soil cultivation. Yet it often relies on the use of chemical compounds that are not necessarily harmless for the surrounding wildlife. In this study, we tested the effects of realistic concentrations of copper sulphate-largely used in organic farming as a fungicide-on ecologically-relevant traits of the walking stick insect Bacillus rossius, a species commonly found in the proximity of cultivated fields across Europe. By using second-generation progeny of wild-caught parthenogenetic females bred in common gardens, we measured the impact of copper sulphate (CuSO) on both the life-history (body condition, number of eggs, and hatching success) and behavioural traits (activity and maximum vertical speed) of the individuals. We observed strong negative effects of high, realistic concentrations of copper sulphate on most traits within 12 days of exposure, while effects were less evident at lower concentrations of the pollutant. Our results reveal that realistic concentrations of copper sulphate can compromise important traits that regulate both the survival and reproduction of animals in the wild, with such effects that are, however, dose dependent. We suggest that common practices in organic farming require further consideration on their ecological and evolutionary impact on wildlife.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173626DOI Listing

Publication Analysis

Top Keywords

organic farming
16
copper sulphate
16
realistic concentrations
12
concentrations copper
12
walking stick
8
stick insect
8
insect bacillus
8
bacillus rossius
8
copper
5
dark side
4

Similar Publications

Social ecology of artisanal sand mining in the Niger River around Bamako, Mali.

PLoS One

January 2025

Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics, Universität Kassel, Kassel, Germany.

Sand, shaping both natural waterways and urban infrastructure, has recently seen a major surge in extraction, particularly in rapidly urbanizing regions like West Africa. To assess the organization, quantification, and socio-ecological implications of sand mining around Mali's capital Bamako, we employed a mixed methods approach including structured and unstructured interviews, truck counts, turbidity analyses, and river depth measurements. Our study identified five artisanal systems for mining sand and gravel from the Niger River, using tied-up pirogues, single pirogues, carts, tractors, and trucks.

View Article and Find Full Text PDF

From trade-off to synergy: how nutrient status modulates plant resistance to herbivorous insects?

Adv Biotechnol (Singap)

October 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.

The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.

View Article and Find Full Text PDF

Iron(II/III) Alters the Relative Roles of the Microbial Byproduct and Humic Acid during Chromium(VI) Reduction and Fixation by Soil-Dissolved Organic Matter.

Environ Sci Technol

January 2025

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.

Though reduction of hexavalent chromium (Cr(VI)) to Cr(III) by dissolved organic matter (DOM) is critical for the remediation of polluted soils, the effects of DOM chemodiversity and underlying mechanisms are not fully elucidated yet. Here, Cr(VI) reduction and immobilization mediated by microbial byproduct (MBP)- and humic acid (HA)-like components in (hot) water-soluble organic matter (WSOM), (H)WSOM, from four soil samples in tropical and subtropical regions of China were investigated. It demonstrates that Cr(VI) reduction capacity decreases in the order WSOM > HWSOM and MBP-enriched DOM > HA-enriched DOM due to the higher contents of low molecular weight saturated compounds and CHO molecules in the former.

View Article and Find Full Text PDF

The interactions of nanoplastics (NPs) with natural organic matters (NOMs) dominate the environmental fate of both substances and the organic carbon cycle. Their binding and aggregation mechanisms at the molecular level remain elusive due to the high structural complexity of NOMs and aged NPs. Molecular modeling was used to understand the detailed dynamic interaction mechanism between NOMs and NPs.

View Article and Find Full Text PDF

Production and use of lignocellulosic wood vinegar and tar as organic pesticides to fight bacterial canker disease.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada. Electronic address:

This study investigated the production and application of lignocellulosic wood vinegar and tar as organic pesticides to combat bacterial canker disease in trees, caused by pathogenic bacteria. Lignocellulosic wood vinegar and tar were produced from various lignocellulosic wastes through pyrolysis at different temperatures, with sawdust at 300 °C, 350 °C, and 400 °C yielding the highest quantity and quality of vinegar. Chemical analysis revealed that the lignocellulosic vinegar contained significant concentrations of acetic acid, methanol, and phenolic compounds, all known for their strong antimicrobial properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!