A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating the impact of microplastics on triphenyl phosphate adsorption in soil: Insights into environmental factors and soil properties. | LitMetric

Investigating the impact of microplastics on triphenyl phosphate adsorption in soil: Insights into environmental factors and soil properties.

Sci Total Environ

REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal. Electronic address:

Published: September 2024

Microplastics (MPs) pose significant environmental pollution problems owing to their diverse properties such as various shapes, sizes, compositions, surface features, and levels of degradation. Moreover, their interactions with toxic chemicals and aging processes add complexity to environmental research. This study investigated the adsorption of triphenyl phosphate (TPhP) in soil-only, MP-only, and soil-MP simulated environments under different conditions. The experiment involved three phases: initial exposure to a pH of 5.5 under fluorescent light, subsequent introduction of ultraviolet (UV) radiation, and pH adjustment to 4.0 and 7.0, while maintaining UV exposure, each lasting 7 days. The study found that environmental factors affected TPhP sorption capacity, with higher adsorption observed under UV radiation and acidic conditions. In contrast, the MP-only systems showed no clear trend for TPhP adsorption, suggesting kinetic limitations. When MPs were added to the soil, the adsorption dynamics were altered, with varying adsorption capacities observed for different MP polymers under different aging conditions. ATR-FTIR spectroscopy, micro-Raman spectroscopy, and water contact angle measurements suggested potential photooxidation processes and changes in the surface hydrophobicity of the MPs subjected to simulated environmental conditions. This study provides valuable insights into the interplay between soil properties, MP characteristics, and environmental factors in determining TPhP sorption dynamics in soil-MP environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173745DOI Listing

Publication Analysis

Top Keywords

environmental factors
12
triphenyl phosphate
8
soil properties
8
tphp sorption
8
adsorption
6
environmental
6
investigating impact
4
impact microplastics
4
microplastics triphenyl
4
phosphate adsorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!