Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study addresses the need for accurate structural data regarding the toxicity of fragrances in sanitizers and disinfectants. We compare the predictive and descriptive (model stability) potential of multiple linear regression (MLR) and partial least squares (PLS) models optimized through variable selection (VS). A novel hybrid chaotic neural network algorithm with competitive learning (CCLNNA)-PLS modeling strategy can offer specific optimization with satisfactory results, even for a limited dataset. While also exploring the preliminary comparative analysis, the goal is to introduce an adapted novel CCLNNA optimization strategy for VS, inspired by neural networks, along with exploring the influence of the percentage of significant descriptors in the optimization function to enhance the final model's capabilities. We analyzed an available dataset of 24 molecules, incorporating ADMET and PaDEL descriptors as predictor variables, to explore the relationship between the response/target variable (pLC) and the meticulously optimized set of descriptors. The suitability of the selected PLS models (cross- and external-validated accuracy combined with percentage of significant descriptors at a level equal to or >80 %) underscores the importance of expanding the dataset to amplify the validation protocols, thus enhancing future model reliability and environmental impact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!