A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chaotic neural network algorithm with competitive learning integrated with partial Least Square models for the prediction of the toxicity of fragrances in sanitizers and disinfectants. | LitMetric

This study addresses the need for accurate structural data regarding the toxicity of fragrances in sanitizers and disinfectants. We compare the predictive and descriptive (model stability) potential of multiple linear regression (MLR) and partial least squares (PLS) models optimized through variable selection (VS). A novel hybrid chaotic neural network algorithm with competitive learning (CCLNNA)-PLS modeling strategy can offer specific optimization with satisfactory results, even for a limited dataset. While also exploring the preliminary comparative analysis, the goal is to introduce an adapted novel CCLNNA optimization strategy for VS, inspired by neural networks, along with exploring the influence of the percentage of significant descriptors in the optimization function to enhance the final model's capabilities. We analyzed an available dataset of 24 molecules, incorporating ADMET and PaDEL descriptors as predictor variables, to explore the relationship between the response/target variable (pLC) and the meticulously optimized set of descriptors. The suitability of the selected PLS models (cross- and external-validated accuracy combined with percentage of significant descriptors at a level equal to or >80 %) underscores the importance of expanding the dataset to amplify the validation protocols, thus enhancing future model reliability and environmental impact.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173754DOI Listing

Publication Analysis

Top Keywords

chaotic neural
8
neural network
8
network algorithm
8
algorithm competitive
8
competitive learning
8
toxicity fragrances
8
fragrances sanitizers
8
sanitizers disinfectants
8
pls models
8
percentage descriptors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!