Rivers of plastic: A socio-economic and topographic approach to modeling plastic transport from catchment to sea.

Environ Pollut

Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address:

Published: September 2024

Marine litter caused by discharge of mismanaged plastic waste is considered to be one of the major environmental challenges by the international society. With the annual increase of plastic production, a growing number of plastic products are being used in people's daily lives. A large number of these plastics end up as waste emitted into rivers and subsequently into oceans through the effects of downpours or wind, posing a threat to the marine ecosystem. In this study, we developed a riverine plastic transport model based on catchment topography and social-economic factors. By applying reasonable compromise on the complexity of the model, this compromised simplified process-based model has the innovative capability to estimate plastic emissions effectively under the current conditions of limited data availability for model inputs. Compared to existing models, this novel model can also resolve challenges related to the contributions of various land use types and transport stages to plastic emissions into the oceans. To further explore the applicability of our results on a global scale, certain input parameter such as the proportion of mismanaged waste is crucial for users to acquire. Here, taking the S river catchment as our study area, the tourism-driven seasonal variation of land-based plastic emissions was quantified. According to our estimation, the emission flux in S river catchment in 2020 was 68 to 280 tons. 62.4% of riverine plastics reached the ocean. Although urban areas are the predominant contributors to the total emission flux, the contributions from other land use types such as forests and cultivated areas are also unignorable. For instance, forests and cultivated areas contribute 25.7% and 6.3%, respectively, even surpassing the contributions from high tourist activity (5.8%). Stricter waste collection legislations are imperatively needed particularly in these regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124314DOI Listing

Publication Analysis

Top Keywords

plastic emissions
12
plastic
8
plastic transport
8
contributions land
8
land types
8
river catchment
8
emission flux
8
forests cultivated
8
cultivated areas
8
model
5

Similar Publications

The community dynamic alterations mechanisms of traveling plastics in the Pearl River estuary with the salinity influence.

Water Res

December 2024

College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:

Most ocean plastics originate from terrestrial emissions, and the plastisphere on the plastics would alter during the traveling due to the significant differences in biological communities between freshwater and marine ecosystems. Microorganisms are influenced by the increasing salinity during traveling. To understand the contribution of plastic on the alteration in biological communities of plastisphere during traveling, this study investigated the alterations in microbial communities on plastics during the migration from freshwater to brackish water and saltwater.

View Article and Find Full Text PDF

For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.

View Article and Find Full Text PDF

This is the first study to investigate the possible release of microplastic-derived dissolved organic matter (MP-DOM) in water from three major types of bio-based MPs, namely, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and PLA-PHA mixtures, under ultraviolet (UV) irradiation conditions. At an initial MP concentration of approximately 5 g per liter, the release of MP-DOM from the studied MPs ranged from 1.55-6.

View Article and Find Full Text PDF

Background And Objectives: Microplastics, which originate from the breakdown of larger plastic fragments or are intentionally produced for industrial applications, pose significant human and ecological risks through inhalation, ingestion, and dermal contact. Our study examined the release of microplastics during the preparation of homemade saline solutions, specifically when tearing open powder packets and mixing the powder with water.

Methods: We used commercially available polypropylene nasal irrigation bottles from the Korean market and collected six samples of nasal irrigation fluids.

View Article and Find Full Text PDF
Article Synopsis
  • Polyhydroxyalkanoates (PHAs) are biodegradable plastics that can be produced through a mixed culture-based process, but ammonia nitrogen can hinder this production.
  • This study explores ways to efficiently reuse ammonia nitrogen to enhance PHA synthesis and reduce waste.
  • Results showed a significant increase in PHA production when using specific substrate and process conditions, while also effectively recycling ammonia without negatively affecting the mixed culture's properties.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!