Detoxification of DON-induced hepatotoxicity in mice by cold atmospheric plasma.

Ecotoxicol Environ Saf

Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China.

Published: July 2024

Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.116547DOI Listing

Publication Analysis

Top Keywords

don-induced hepatotoxicity
12
liver injury
12
cap treatment
12
don
10
cap
10
detoxification don-induced
8
cold atmospheric
8
atmospheric plasma
8
food feed
8
mechanism cap
8

Similar Publications

CYP2E1 mediated deoxynivalenol-induced hepatocyte toxicity by regulating ferroptosis.

Toxicology

November 2024

Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China. Electronic address:

Deoxynivalenol (DON), one of the most common mycotoxins in food and feed, can cause acute and chronic liver injury, posing a serious health risk to humans and animals. One of the important manifestations of DON-induced hepatotoxicity is ferroptosis. It has been reported that CYP2E1 can mediated ferroptosis, but the role of DON-induced CYP2E1 in DON-induced ferroptosis in hepatocytes is unknown.

View Article and Find Full Text PDF

Detoxification of DON-induced hepatotoxicity in mice by cold atmospheric plasma.

Ecotoxicol Environ Saf

July 2024

Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China.

Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment.

View Article and Find Full Text PDF

18β-Glycyrrhetinic acid protects against deoxynivalenol-induced liver injury via modulating ferritinophagy and mitochondrial quality control.

J Hazard Mater

June 2024

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China. Electronic address:

Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18β-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Deoxynivalenol (DON) is a significant Fusarium toxin that has gained global attention due to its high frequency of contamination in food and feed. It was reported to have hepatotoxicity, immunotoxicity, and reproduction toxicity in organs. On the other hand, Selenomethionine (SeMet) was proven to have anti-oxidation, tissue repairing, immunity improvement, and antifungal mycotoxin infection functions.

View Article and Find Full Text PDF

Resveratrol protects against deoxynivalenol-induced ferroptosis in HepG2 cells.

Toxicology

August 2023

Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China. Electronic address:

Deoxynivalenol (DON) is one of the most serious mycotoxins that contaminate food and feed, causing hepatocyte death. However, there is still a lack of understanding regarding the new cell death modalities that explain DON-induced hepatocyte toxicity. Ferroptosis is an iron-dependent type of cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!