Bitter orange (Citrus aurantium) is an important source of essential oils with high antimicrobial activities, however the composition and antifungal potential of the decoction peels is little explored. This study assessed the peel decoction's chemical profile at the secondary metabolism level and its antifungal activity against the melon phytopathogen Fusarium jinanense. The decoction's antifungal potential was investigated using a bioassay-guided fractionation approach based on Solid-Phase Extraction (SPE) and LC-HRMS/MS analysis. Coumarins and flavones were the most abundant classes of compounds in the high-value fractions responsible for up to 61% of the mycelial inhibition of F. jinanense. Overall, this study has presented for the first time the chemical composition, the antifungal potential of the decoction of C. aurantium peels and the compounds associated with these results. This strategy can guide the exploration of under-explored food sources and add value to compounds or fractions enriched with bioactive compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.139769DOI Listing

Publication Analysis

Top Keywords

antifungal potential
12
bitter orange
8
fusarium jinanense
8
composition antifungal
8
potential decoction
8
unraveling antifungal
4
antifungal composition
4
composition bitter
4
orange decoction
4
decoction melon
4

Similar Publications

Porcine blood, a significant byproduct of the pork industry, represents a potential source of antimicrobial peptides (AMPs). AMPs offer a promising alternative to chemical antimicrobials, which can be used as natural preservatives in the food industry. AMPs can exhibit both antibacterial and/or antifungal properties, thus improving food safety and addressing the growing concern of antibiotic and antifungal resistance.

View Article and Find Full Text PDF

O-Methyldehydroserine, ΔSer(Me), is a non-standard α,β-dehydroamino acid, which occurs naturally in Cyrmenins with potential pharmaceutical application. The C-terminal part and the side chain of the ΔSer(Me) residue constitute the β-methoxyacrylate unit, responsible for antifungal activity of Cyrmenins. The short model, Ac-ΔSer(Me)-OMe, was analyzed considering the geometrical isomer Z () and E ().

View Article and Find Full Text PDF

Eumycetoma, a chronic fungal infection caused by , is a neglected tropical disease characterized by tumor-like growths that can lead to permanent disability and deformities if untreated. Predominantly affecting regions in Africa, South America, and Asia, it imposes significant physical, social, and economic burdens. Current treatments, including antifungal drugs like itraconazole, often show variable efficacy, with severe cases necessitating surgical intervention or amputation.

View Article and Find Full Text PDF
Article Synopsis
  • Innovative strategies are needed to combat fungal pathogens for sustainable crop protection, with traditional fungicides facing resistance issues due to their single-target action.
  • The study investigated the synergistic effects of chitosan (CS) and the fungicide azoxystrobin, finding a high synergy score that significantly improves antifungal efficacy.
  • Additionally, combining CS and azoxystrobin with RNA interference techniques enhanced fungal control, highlighting a promising eco-friendly approach and the need for further research on its molecular mechanisms.
View Article and Find Full Text PDF

Phytophthora root and stem rot caused by () is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms underlying the response of (soybean) to infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!