Organisms respond to their environment in various ways, including moving, adapting, acclimatising or a combination of responses. Within estuarine habitats, organisms are exposed to naturally variable environmental conditions. In urbanised estuaries, these natural variations can interact with human stressors such as habitat modification and pollution. Here, we investigated trait variation in the golden kelp Ecklonia radiata across an urban estuary - Sydney Harbour, Australia. We found that kelp morphology differed significantly between the more human-modified inner and the less modified outer harbour. Kelp individuals were smaller, had fewer laminae, and lacked spines in the inner harbour where it was warmer, more contaminated and less light was available. Inner harbour populations were characterised by lower tissue nitrogen and higher lead concentrations. These findings provide insights into how environmental variation could affect kelp morphology and physiology, and the high trait variation suggests adaptive capacity in E. radiata.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2024.106572 | DOI Listing |
Ecol Appl
January 2025
Parks Victoria, Marine and Coastal Science and Programs, Melbourne, Victoria, Australia.
Kelp forests serve as the foundation for shallow marine ecosystems in many temperate areas of the world but are under threat from various stressors, including climate change. To better manage these ecosystems now and into the future, understanding the impacts of climate change and identifying potential refuges will help to prioritize management actions. In this study, we use a long-term dataset of observations of kelp percentage cover for two dominant canopy-forming species off the coast of Victoria, Australia: Ecklonia radiata and Phyllospora comosa.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia.
Discarded or lost fishing gear from recreational or commercial fishers significantly contributes to global marine pollution. This debris accumulates with organic detritus on the seafloor, potentially impacting detrital dynamics. We used an outdoor mesocosm experiment to test hypotheses that soft plastic lures with nylon lines and commercial-grade fish netting influence the decomposition of Ecklonia radiata detritus in current and future ocean temperatures.
View Article and Find Full Text PDFJ Phycol
December 2024
Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Battery Point, Tasmania, Australia.
Dissolved organic carbon (DOC) released by macroalgae is an intrinsic component of the coastal ocean carbon cycle, yet knowledge of how future ocean warming may influence this is limited. Temperature is one of the primary abiotic regulators of macroalgal physiology, but there is minimal understanding of how it influences the magnitude and mechanisms of DOC release. To investigate this, we examined the effect of a range of temperatures on DOC release rates and physiological traits of Ecklonia radiata, the most abundant and widespread kelp in Australia that represents a potentially significant contribution to coastal ocean carbon cycling.
View Article and Find Full Text PDFFive Australian seaweed species, , , , , and , thrive along the country's shorelines. Some of these seaweeds have recognized health benefits but have not been fully investigated in terms of their bioactive components and mechanisms of action. We employed ultrasonication with 70% methanol to extract phenolic compounds from these seaweeds and investigated a range of bioactivities for these extracts, including anti-inflammatory activity exploring urease inhibition, nitric oxide scavenging activity, protein denaturation inhibition, and protease inhibition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!