Understanding and controlling the structure and function of liquid interfaces is a constant challenge in biology, nanoscience and nanotechnology, with applications ranging from molecular electronics to controlled drug release. X-ray reflectivity and grazing incidence diffraction provide invaluable probes for studying the atomic scale structure at liquid-air interfaces. The new time-resolved laser system at the LISA liquid diffractometer situated at beamline P08 at the PETRA III synchrotron radiation source in Hamburg provides a laser pump with X-ray probe. The femtosecond laser combined with the LISA diffractometer allows unique opportunities to investigate photo-induced structural changes at liquid interfaces on the pico- and nanosecond time scales with pump-probe techniques. A time resolution of 38 ps has been achieved and verified with Bi. First experiments include laser-induced effects on salt solutions and liquid mercury surfaces with static and varied time scales measurements showing the proof of concept for investigations at liquid surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226150 | PMC |
http://dx.doi.org/10.1107/S1600577524003400 | DOI Listing |
ACS Photonics
January 2025
Foundation of Research and Technology Hellas, Institute of Electronic Structure and Laser, Heraklion 71110, Greece.
We demonstrate a simple, low-cost, and ultracompact chiral resonant metasurface design, which, by strong local coupling to a quantum gain medium (quantum emitters), allows to implement an ultrathin metasurface laser, capable of generating tunable circularly polarized coherent lasing output. According to our detailed numerical investigations, the lasing emission can be transformed from linear to circular and switch from right- to left-handed circularly polarized (CP) not only by altering the metasurface chiral response but also by changing the polarization of a linearly polarized pump wave, thus enabling dynamic lasing-polarization control. Given the increasing interest for CP laser emission, our chiral metasurface laser design proves to be a versatile yet straightforward strategy to generate a strong and tailored CP emission laser, promising great potential for future applications in both photonics and materials science.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Physics and Astronomy, Adam Mickiewicz University, Poznan, 61-614, Poland.
The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.
View Article and Find Full Text PDFNano Lett
January 2025
University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.
View Article and Find Full Text PDFIn this Letter, we report an ultraflat high-power supercontinuum (SC) based on a low-loss short-length fluorotellurite fiber. A novel high-peak power dual-Raman soliton femtosecond laser is used as a pump source, which effectively extends the mid-infrared SC spectral range and enhances the flatness of the SC. Finally, we obtained a 10.
View Article and Find Full Text PDFWe investigate the enhanced terahertz generation in the organic crystal BNA when pumped by compressed high-energy ytterbium laser pulses. By compressing the pump pulses from 170 fs down to 43 fs using an argon-filled hollow-core fiber and chirped mirrors, the terahertz conversion efficiency is increased by 2.4 times, leading to the generation of multi-microjoule terahertz pulses with a frequency spectrum almost twice as wide, extending up to 19 THz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!