Proton-conducting sulfonated polymer metal-organic framework (MOF)-based composite membranes were synthesized by anchoring the nickel MOF (Ni-MOF) to the aromatic sulfonated polymer backbone. In this work, we sulfonated two different polymers, poly(1,4-phenylene ether ether sulfone) (PEES) and poly ether ether ketone (PEEK), with a controllable sulfonation degree, and the synthesized Ni-MOF was incorporated into the sulfonated polymers to prepare a polymer electrolyte membrane. The effect of an MOF as a pendant moiety on the polymer backbone had a significant effect on properties such as water uptake, thermal, mechanical, and oxidative stabilities, swelling ratio, ion-exchange capacity (IEC), morphology, proton conductivity, and fuel-cell performance. The presence of an MOF structure enhanced the water retention capacity of the composite membranes. Adding Ni-MOF to the composite membrane improved the fuel-cell performance by increasing the OCV and power density. Among the synthesized electrolytes, the 3 wt % Ni-MOF-incorporated sPEEK membrane displayed a power density of 319 mW/cm with a cell voltage of 0.79 V, which was higher than the pure sulfonated polymer. Thus, the developed composite membranes are suitable for fuel-cell applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c04709 | DOI Listing |
Sci Total Environ
January 2025
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy. Electronic address:
Nowadays, marine pollution is a global problem which finds in microplastics (MPs) and emerging pollutants, such as perfluoroalkyl substances (PFASs), two of the main culprits. Sea cucumbers are a group of marine benthic invertebrates that show ecological, economic and social relevance. As deposit/suspension feeders, sea cucumbers show high susceptibility to bioaccumulate marine pollutants, including PFASs and MPs.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute for Technical Chemistry, Macromolecular Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
As the demand for clean water intensifies, developing effective methods for removing pollutants from contaminated sources becomes increasingly crucial. This work establishes a method for additive manufacturing of functional polymer sorbents with hollow porous features, designed to enhance interactions with organic micropollutants. Specifically, core-shell filaments are used as the starting materials, which contain polypropylene (PP) as the shell and poly(acrylonitrile-co-butadiene-co-styrene) as the core, to fabricate 3-dimensional (3D) structures on-demand via material extrusion.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University Named After H.M. Berbekov, 360004 Nalchik, Russia.
The influence of the molecular weight and chemical structure of polyphenylene sulfone (PPSU) end groups on the formation of the porous structure of ultrafiltration (UF) hollow fiber membranes was investigated. Polymers with a molecular weight ranging from 67 to 81 kg/mol and with a hydroxyl-to-chlorine end group ratio ranging from 0.43 to 17.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan 48513, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!