Purpose: With the increasing prevalence of autism spectrum disorders (ASD), the importance of early screening and diagnosis has been subject to considerable discussion. Given the subtle differences between ASD children and typically developing children during the early stages of development, it is imperative to investigate the utilization of automatic recognition methods powered by artificial intelligence. We aim to summarize the research work on this topic and sort out the markers that can be used for identification.
Methods: We searched the papers published in the Web of Science, PubMed, Scopus, Medline, SpringerLink, Wiley Online Library, and EBSCO databases from 1st January 2013 to 13th November 2023, and 43 articles were included.
Results: These articles mainly divided recognition markers into five categories: gaze behaviors, facial expressions, motor movements, voice features, and task performance. Based on the above markers, the accuracy of artificial intelligence screening ranged from 62.13 to 100%, the sensitivity ranged from 69.67 to 100%, the specificity ranged from 54 to 100%.
Conclusion: Therefore, artificial intelligence recognition holds promise as a tool for identifying children with ASD. However, it still needs to continually enhance the screening model and improve accuracy through multimodal screening, thereby facilitating timely intervention and treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10803-024-06429-9 | DOI Listing |
Int J Med Inform
January 2025
School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:
Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.
View Article and Find Full Text PDFJMIR Cancer
January 2025
Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Background: The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology reports, facilitating the interpretation of textual content, and enhancing data utility through clustering techniques. Clustering allows for the identification of similar lesions and disease patterns across a broad dataset, making it useful for aggregating information and discovering new insights in medical imaging.
View Article and Find Full Text PDFMed Oral Patol Oral Cir Bucal
January 2025
15, Trauma Centre, District Hospital Neemuch Madhya Pradesh - 458441, India
Background: The accurate and timely diagnosis of oral potentially malignant lesions (OPMLs) is crucial for effective management and prevention of oral cancer. Recent advancements in artificial intelligence technologies indicates its potential to assist in clinical decision-making. Hence, this study was carried out with the aim to evaluate and compare the diagnostic accuracy of ChatGPT 3.
View Article and Find Full Text PDFRadiol Med
January 2025
Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.
Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.
BMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!