Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Systemic administration of alendronate is associated with various adverse reactions in clinical settings. To mitigate these side effects, poloxamer 407 (P-407) modified with cellulose was chosen to encapsulate alendronate. This drug-loaded system was then incorporated into a collagen/β-tricalcium phosphate (β-TCP) scaffold to create a localized drug delivery system. Nuclear magnetic resonance spectrum and rheological studies revealed hydrogen bonding between P-407 and cellulose as well as a competitive interaction with water that contributed to the delayed release of alendronate (ALN). Analysis of the degradation kinetics of P-407 and release kinetics of ALN indicated zero-order kinetics for the former and Fickian or quasi-Fickian diffusion for the latter. The addition of cellulose, particularly carboxymethyl cellulose (CMC), inhibited the degradation of P-407 and prolonged the release of ALN. The scaffold's structure increased the contact area of P-407 with the PBS buffer, thereby, influencing the release rate of ALN. Finally, biocompatibility testing demonstrated that the drug delivery system exhibited favorable cytocompatibility and hemocompatibility. Collectively, these findings suggest that the drug delivery system holds promise for implantation and bone healing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/08853282241257613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!