Vago-splenic signal transduction of cardioprotection in humans.

Eur Heart J

Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.

Published: September 2024

Background And Aims: The spleen serves as an important relay organ that releases cardioprotective factor(s) upon vagal activation during remote ischaemic conditioning (RIC) in rats and pigs. The translation of these findings to humans was attempted.

Methods: Remote ischaemic conditioning or electrical auricular tragus stimulation (ATS) were performed in 10 healthy young volunteers, 10 volunteers with splenectomy, and 20 matched controls. Venous blood samples were taken before and after RIC/ATS or placebo, and a plasma dialysate was infused into isolated perfused rat hearts subjected to global ischaemia/reperfusion.

Results: Neither left nor right RIC or ATS altered heart rate and heart rate variability in the study cohorts. With the plasma dialysate prepared before RIC or ATS, respectively, infarct size (% ventricular mass) in the recipient rat heart was 36 ± 6% (left RIC), 34 ± 3% (right RIC) or 31 ± 5% (left ATS), 35 ± 5% (right ATS), and decreased with the plasma dialysate from healthy volunteers after RIC or ATS to 20 ± 4% (left RIC), 23 ± 6% (right RIC) or to 19 ± 4% (left ATS), 26 ± 9% (right ATS); infarct size was still reduced with plasma dialysate 4 days after ATS and 9 days after RIC. In a subgroup of six healthy volunteers, such infarct size reduction was abrogated by intravenous atropine. Infarct size reduction by RIC or ATS was also abrogated in 10 volunteers with splenectomy, but not in their 20 matched controls.

Conclusions: In humans, vagal innervation and the spleen as a relay organ are decisive for the cardioprotective signal transduction of RIC and ATS.

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehae250DOI Listing

Publication Analysis

Top Keywords

ric ats
20
plasma dialysate
16
infarct size
16
left ric
12
ric
11
ats
11
signal transduction
8
relay organ
8
remote ischaemic
8
ischaemic conditioning
8

Similar Publications

Vago-splenic signal transduction of cardioprotection in humans.

Eur Heart J

September 2024

Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.

Background And Aims: The spleen serves as an important relay organ that releases cardioprotective factor(s) upon vagal activation during remote ischaemic conditioning (RIC) in rats and pigs. The translation of these findings to humans was attempted.

Methods: Remote ischaemic conditioning or electrical auricular tragus stimulation (ATS) were performed in 10 healthy young volunteers, 10 volunteers with splenectomy, and 20 matched controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!