The purpose of the present study was to clarify the impact of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. Nine older females (mean ± SD, 70 ± 6 yr) and 11 younger females (20 ± 1 yr) completed the study. A passive leg raising (PLR) test was performed wherein the participants were positioned supine (baseline, 0°), and their lower limbs were passively lifted at 10°, 20°, 30°, and 40° (3 min at each angle). Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. The central venous pressure was estimated based on peripheral venous pressure (eCVP), which was monitored using a cannula in the right large antecubital vein. Baseline MSNA was higher in older females than in younger females. MSNA burst frequency (BF) decreased during the PLR test in both older and younger females, but the magnitude of the decrease in MSNA BF was smaller in older females than in younger females (older, -3.5 ± 1.5 vs. younger, -6.3 ± 1.5 bursts/min at 40° from baseline, = 0.014). The eCVP increased during the PLR in both groups, and there was no difference in the changes in eCVP between the two groups (older, +1.07 ± 0.37 vs. younger, +1.12 ± 0.33 mmHg at 40° from baseline, = 0.941). These results suggest that inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age in females. There were no available data concerning the effect of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. The magnitude of the decrease in muscle sympathetic nerve activity during passive leg raising (10°-40°) was smaller in older females than in young females. In females, inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00109.2024 | DOI Listing |
J Physiol
September 2024
Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
Microneurographic recordings of the human cervical vagus nerve have revealed the presence of multi-unit neural activity with measurable cardiac rhythmicity. This suggests that the physiology of vagal neurones with cardiovascular regulatory function can be studied using this method. Here, the activity of cardiac rhythmic single units was discriminated from human cervical vagus nerve recordings using template-based waveform matching.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2024
Department of Biomedical Engineering, Toyo University, Kawagoe, Japan.
The purpose of the present study was to clarify the impact of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. Nine older females (mean ± SD, 70 ± 6 yr) and 11 younger females (20 ± 1 yr) completed the study. A passive leg raising (PLR) test was performed wherein the participants were positioned supine (baseline, 0°), and their lower limbs were passively lifted at 10°, 20°, 30°, and 40° (3 min at each angle).
View Article and Find Full Text PDFJ Physiol Sci
March 2024
Department of Biomedical Engineering, Toyo University, Kawagoe, Japan.
The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º.
View Article and Find Full Text PDFBiomed Opt Express
February 2024
Laboratory of New Functional Materials for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia.
Sympathetic vasomotor response is the most important part of the autonomic regulation of circulation, which determines the quality of life. It is disrupted in a number of diseases, particularly in patients with congestive heart failure (CHF). However, experimental evaluation of reflex vasoconstriction is still a non-trivial task due to the limited set of available technologies.
View Article and Find Full Text PDFASAIO J
June 2024
Division of Applied Biomedical Engineering, Penn State Hershey Medical Center, Hershey, Pennsylvania.
Functional capacity remains limited in heart failure patients with left ventricular assist devices (LVADs) due to fixed pump speed and inability to offload the left ventricle adequately. We hypothesized that manually adjusting LVAD speed during exercise based on pulmonary capillary wedge pressures would increase total cardiac output and maximal oxygen consumption. Two participants with a HeartWare LVAD underwent an invasive ramp study at rest followed by an invasive cardiopulmonary stress test exercising in two randomized phases: fixed speed and adjusted speed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!