Background: Tracheostomy-related acquired pressure injuries (TRPIs) are one of the hospital-acquired conditions. We hypothesize that an uneven ventilator circuit load, leading to non-neutral tracheostomy tube positioning in the immediate post-tracheostomy period, leads to an increased incidence of TRPIs. Does switching the ventilator circuit load daily, in addition to standard post-tracheostomy care, lead to a decreased incidence of TRPIs?
Methods: This is a prospective quality improvement study. Study was conducted at two academic hospital sites within tertiary care hospitals at Emory University in different ICUs. Consecutive patients undergoing bedside percutaneous tracheostomy by the interventional pulmonary service were included. The flip the ventilator circuit (FLIC) protocol was designed and implemented in selected ICUs, with other ICUs as controls.
Results: Incidence of TRPI in intervention and control group were recorded at post-tracheostomy day 5. A total of 99 patients were included from October 22, 2019, to May 22, 2020. Overall, the total incidence of any TRPI was 23% at post-tracheostomy day 5. Incidence of stage I, stage II, and stages III-IV TRPIs at postoperative day 5 was 11%, 12%, and 0%, respectively. There was a decrease in the rate of skin breakdown in patients following the FLIC protocol when compared with standard of care (13% vs. 36%; p = 0.01). In a multivariable analysis, interventional group had decreased odds of developing TRPI (odds ratio, 0.32; 95% CI, 0.11-0.92; p = 0.03) after adjusting for age, albumin, body mass index, diabetes mellitus, and days in hospital before tracheostomy.
Conclusions: The incidence of TRPIs within the first week following percutaneous tracheostomy is high. Switching the side of the ventilator circuit to evenly distribute load, in addition to standard bundled tracheostomy care, may decrease the overall incidence of TRPIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161296 | PMC |
http://dx.doi.org/10.1097/CCE.0000000000001102 | DOI Listing |
Med Intensiva (Engl Ed)
January 2025
Servicio ECMO, Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.
Objective: To document the experience with ECMO therapy in healthcare institutions across Latin America between 2016 and 2020.
Design: Cross-sectional study.
Setting: Private and public health institutions from 7 countries.
Indian J Nucl Med
November 2024
Health Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.
Over the last 15 years, there has been substantial growth in the installation of medical cyclotrons. This is mainly due to the increased demand for the production of positron emission tomography radiopharmaceuticals. In every country, there is a regulatory body that regulates the uses of medical cyclotron intending to protect occupational workers, the public, and the environment.
View Article and Find Full Text PDFCrit Care Resusc
December 2024
Department of Intensive Care, Alfred Health, 55 Commercial Road, Melbourne, 3181, VIC, Australia.
Objective: To describe the epidemiology and clinical features of pressure injury (PI) development in adult patients supported with extracorporeal membrane oxygenation (ECMO).
Design: Retrospective, observational, cohort study from January 2018 to May 2023.
Setting: A single-centre high-volume ECMO specialist intensive care unit (ICU).
bioRxiv
December 2024
Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL.
The opioid epidemic is a pervasive health issue and continues to have a drastic impact on the United States. This is primarily because opioids cause respiratory suppression and the leading cause of death in opioid overdose is respiratory failure (, opioid-induced respiratory depression, OIRD). Opioid administration can affect the frequency and magnitude of inspiratory motor drive by activating μ-opioid receptors that are located throughout the respiratory control network in the brainstem.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Propofol, a widely used intravenous anesthetic agent, requires accurate monitoring to ensure therapeutic efficacy and prevent oversedation. Recent developments in modern analytical instrumentation have led to significant breakthroughs in on-line analysis of exhaled breath. This review discusses several sophisticated analytical methods that have been explored for noninvasive, real-time monitoring of propofol concentrations, including proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, and gas chromatography coupled to surface acoustic wave sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!