A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Harnessing machine learning potential for personalised drug design and overcoming drug resistance. | LitMetric

Harnessing machine learning potential for personalised drug design and overcoming drug resistance.

J Drug Target

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia.

Published: September 2024

Drug resistance in cancer treatment presents a significant challenge, necessitating innovative approaches to improve therapeutic efficacy. Integrating machine learning (ML) in cancer research is promising as ML algorithms outrival in analysing complex datasets, identifying patterns, and predicting treatment outcomes. Leveraging diverse data sources such as genomic profiles, clinical records, and drug response assays, ML uncovers molecular mechanisms of drug resistance, enabling personalised treatment, maximising efficacy and minimising adverse effects. Various ML algorithms contribute to the drug discovery process - Random Forest and Decision Trees predict drug-target interactions and aid in virtual screening, and SVM classify leads on bioactivity data. Neural Networks model QSAR to optimise lead compounds and K-means clustering group compounds with similar chemical properties aiding compound selection. Gaussian Processes predict drug responses, Bayesian Networks infer causal relationships, Autoencoders generate novel compounds, and Genetic Algorithms optimise molecular structures. These algorithms collectively enhance efficiency and success rates in drug design endeavours, from lead identification to optimisation and are cost-effective, empowering clinicians with real-time treatment monitoring and improving patient outcomes. This review highlights the immense potential of ML in revolutionising cancer care through effective drug design to reduce drug resistance, and we have also discussed various limitations and research gaps to understand better.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2024.2365934DOI Listing

Publication Analysis

Top Keywords

drug resistance
16
drug design
12
drug
10
machine learning
8
harnessing machine
4
learning potential
4
potential personalised
4
personalised drug
4
design overcoming
4
overcoming drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!