We develop a functional derivative approach to calculate the chemical potentials of second-order perturbation theory (MP2). In the functional derivative approach, the correlation part of the MP2 chemical potential, which is the derivative of the MP2 correlation energy with respect to the occupation number of frontier orbitals, is obtained from the chain rule via the noninteracting Green's function. First, the MP2 correlation energy is expressed in terms of the noninteracting Green's function, and its functional derivative to the noninteracting Green's function is the second-order self-energy. Then, the derivative of the noninteracting Green's function to the occupation number is obtained by including the orbital relaxation effect. We show that the MP2 chemical potentials obtained from the functional derivative approach agree with that obtained from the finite difference approach. The one-electron Hamiltonian, defined as the derivative of the MP2 energy with respect to the one particle density matrix, is also derived using the functional derivative approach, which can be used in the self-consistent calculations of MP2 and double-hybrid density functionals. The developed functional derivative approach is promising for calculating the chemical potentials and the one-electron Hamiltonian of approximate functionals and many-body perturbation approaches dependent explicitly on the noninteracting Green's function.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c01574DOI Listing

Publication Analysis

Top Keywords

functional derivative
28
derivative approach
24
noninteracting green's
20
green's function
20
chemical potentials
16
one-electron hamiltonian
12
derivative
10
potentials one-electron
8
second-order perturbation
8
perturbation theory
8

Similar Publications

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

Synthesis of naphthalene derivatives via nitrogen-to-carbon transmutation of isoquinolines.

Sci Adv

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.

Heteroarene skeletal editing is gaining popularity in synthetic chemistry. Transmuting single atoms generates molecules that have distinctly varied properties, thereby fostering potent molecular exchanges that can be extensively used to synthesize functional molecules. Herein, we present a convenient protocol for nitrogen-carbon single-atom transmutations in isoquinolines, which is inspired by the Wittig reaction and enables easy access to substituted naphthalene derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!