The increasing global demand for food and agrarian development brings to light a dual issue concerning the use of substances that are crucial for increasing productivity yet can be harmful to human health and the environment when misused. Herein, we combine insights from high-level quantum simulations and experimental findings to elucidate the fundamental physicochemical mechanisms behind developing graphene-based nanomaterials for the adsorption of emerging contaminants, with a specific focus on pesticide glyphosate (GLY). We conducted a comprehensive theoretical and experimental investigation of graphene-based supports as promising candidates for detecting, sensing, capturing, and removing GLY applications. By combining ab initio molecular dynamics and density functional theory calculations, we explored several chemical environments encountered by GLY during its interaction with graphene-based substrates, including pristine and punctual defect regions. Our results unveiled distinct interaction behaviors: physisorption in pristine and doped graphene regions, chemisorption leading to molecular dissociation in vacancy-type defect regions, and complex transformations involving the capture of N and O atoms from impurity-adsorbed graphene, resulting in the formation of new GLY-derived compounds. The theoretical findings were substantiated by FTIR and Raman spectroscopy, which proposed a mechanism explaining GLY adsorption in graphene-based nanomaterials. The comprehensive evaluation of adsorption energies and associated properties provides valuable insights into the intricate nature of these interactions, shedding light on potential applications and guiding future experimental investigations of graphene-based nanofilters for water decontamination.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c05733DOI Listing

Publication Analysis

Top Keywords

graphene-based nanomaterials
12
quantum simulations
8
simulations experimental
8
adsorption graphene-based
8
defect regions
8
graphene-based
6
experimental
4
experimental insights
4
insights glyphosate
4
adsorption
4

Similar Publications

Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.

View Article and Find Full Text PDF

Assembly of graphene oxide reduced graphene oxide in a phospholipid monolayer at air-water interfaces.

Phys Chem Chem Phys

January 2025

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.

Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane.

View Article and Find Full Text PDF

There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.

View Article and Find Full Text PDF

A Graphene-Based Bioactive Product with a Non-Immunological Impact on Mononuclear Cell Populations from Healthy Volunteers.

Nanomaterials (Basel)

December 2024

Department of Systems Biology, Universidad de Alcalá, Instituto Ramon y Cajal de Investigación Sanitaria, Fundación Renal Iñigo Álvarez de Toledo, 28871 Alcalá de Henares, Spain.

We previously described GMC, a graphene-based nanomaterial obtained from carbon nanofibers (CNFs), to be biologically compatible and functional for therapeutic purposes. GMC can reduce triglycerides' content in vitro and in vivo and has other potential bio-functional effects on systemic cells and the potential utility to be used in living systems. Here, immunoreactivity was evaluated by adding GMC in suspension at the biologically functional concentrations, ranging from 10 to 60 µg/mL, for one or several days, to cultured lymphocytes (T, B, NK), either in basal or under stimulating conditions, and monocytes that were derived under culture conditions to pro-inflammatory (GM-MØ) or anti-inflammatory (M-MØ) macrophages.

View Article and Find Full Text PDF

Exploring ways to improve the performance of rotating bands is of great importance for enhancing the power of modern artillery. This study prepared graphene oxide-coated Nylon (GO-Nylon) and Nylon samples based on nylon rotating bands in artillery systems to investigate the feasibility of introducing GO-coated nylon rotating band materials to enhance their tribological and thermal properties. The friction behavior and thermal effects of these two surfaces were analyzed under different external loads and surface roughness conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!