, also known as kratom, has been reported to have a broad range of pharmacological properties. Freshly harvested leaves and their water extracts are consumed in Southeast Asia while preparations made from dried leaf material are consumed in Western countries. Our study evaluated the phytochemical composition of freshly harvested kratom leaves using LCMS/MS analysis of water and ethanol liquid extracts. Mitragynine and its congeners, including 7-hydroxymitragynine, speciocilliatine, speciogynine, paynantheine, as well as bioactive phenolics including chlorogenic acid, o-coumaric acid, quercitrin, and rutin were identified. However, 7-hydroxymitragynine was detected solely in the water-liquid extract. Currently, unknown compounds were also present in the chromatograms and mass spectra. The study results support that 7-hydroxymitragynine is a post-harvest oxidative derivative or metabolite of mitragynine. Further rigorous and comprehensive evaluations of the phytochemical composition of freshly harvested kratom leaves utilising advanced spectrometric methods are needed to establish the full spectrum of phytochemicals within the plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14786419.2024.2362428 | DOI Listing |
Front Pharmacol
December 2024
Institute of Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, China.
Background: Processing methods of traditional Chinese medicinal materials are critical in influencing the active metabolites and pharmacological effects. The fresh processing method effectively prevents the loss and degradation of metabolites, common in traditional drying and softening processes, while also reducing production costs. (AR), a leguminous botanical drug, is widely utilized in clinical practice and functional foods.
View Article and Find Full Text PDFJ Food Prot
December 2024
Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland, South Africa; AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Matieland, South Africa. Electronic address:
This study focused on the application of micro-nano bubbles (MNBs) water generated using air or oxygen (O), as an alternative to chlorine-based wash for fruits. For the in vitro and in vivo investigation, 10 spore or conidia/mL Colletotrichum gloeosporioides suspension was used, and treated with solutions of air- or O-MNB for 30- or 60-min, sodium hypochlorite (NaOCl), and untreated (as control). In the second experiment, freshly harvested guava fruits were washed with tap water (control), NaOCl (standard practice), air-, or O-MNB (for 15- or 30-min).
View Article and Find Full Text PDFmSphere
December 2024
Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.
spp. are part of a group of thermally dimorphic fungal pathogens, which grow as filamentous cells (hyphae) in the soil and transform to a different morphology upon inhalation into the host. The host form, the spherule, is unique and highly undercharacterized due to both technical and biocontainment challenges.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada.
Human enteric pathogens in fresh uncooked seafood are of concern to human health. Here, we report the complete genomes of bacteria not commonly found in freshly harvested seafood, two Typhimurium strains and one draft genome, isolated from harvested oysters grown in Canada.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, 7505101, Rishon LeZion, Israel.
Aquaphotomics is an approach that describes the water-light interactions in aqueous solutions or biological systems and retrieves information about the nature of the underlying water-related interactions. We evaluated the water spectral pattern (WASP) and water matrix structure of freshly harvested cannabis inflorescence from seven different chemovars using near-infrared (NIR) spectral data coupled with chemometric models. Six activated water bands-1342, 1364, 1384, 1412, 1440, and 1462 nm, occurred consistently in all of the spectrum exploration steps as well as in the partial least squares-discriminant analysis (PLS-DA) steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!