Primary vitreoretinal lymphoma (PVRL) is a rare malignant lymphoma subtype with an unfavorable prognosis due to frequent central nervous system (CNS) progression. Thus, identifying factors associated with CNS progression is essential for improving the prognosis of PVRL patients. Accordingly, we conducted a comprehensive genetic analysis using archived vitreous humor samples of 36 PVRL patients diagnosed and treated at our institution and retrospectively examined the relationship between genetic alterations and CNS progression. Whole-exome sequencing (N=2) and amplicon sequencing using a custom panel of 107 lymphomagenesis-related genes (N=34) were performed to assess mutations and copy number alterations. The median number of pathogenic genetic alterations per case was 12 (range, 0-22). Pathogenic genetic alterations of CDKN2A, MYD88, CDKN2B, PRDM1, PIM1, ETV6, CD79B, and IGLL5, as well as aberrant somatic hypermutations, were frequently detected. The frequency of ETV6 loss and PRDM1 alteration (mutation and loss) was 23% and 49%, respectively. Multivariate analysis revealed ETV6 loss (hazard ratio [HR]=3.26, 95% confidence interval [CI]: 1.08-9.85) and PRDM1 alteration (HR=2.52, 95% CI: 1.03-6.16) as candidate risk factors associated with CNS progression of PVRL. Moreover, these two genetic factors defined slow-, intermediate-, and rapid-progression groups (0, 1, and 2 factors, respectively), and the median period to CNS progression differed significantly among them (52 vs. 33 vs. 20 months, respectively). Our findings suggest that genetic factors predict the CNS progression of PVRL effectively, and the genetics-based CNS progression model might lead to stratification of treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532695PMC
http://dx.doi.org/10.3324/haematol.2023.284953DOI Listing

Publication Analysis

Top Keywords

cns progression
28
genetic alterations
16
central nervous
8
nervous system
8
progression
8
primary vitreoretinal
8
vitreoretinal lymphoma
8
factors associated
8
associated cns
8
pvrl patients
8

Similar Publications

In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation.

View Article and Find Full Text PDF

Alpha-synuclein pathology enhances peripheral and CNS immune responses to bacterial endotoxins.

Neurobiol Dis

December 2024

Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany. Electronic address:

Increasing evidence points to infectious diseases as contributor to the pathogenesis of neurodegeneration in Parkinson's disease (PD), probably driven by a peripheral and CNS inflammatory response together with alpha-synuclein (aSyn) pathology. Pro-inflammatory lipopolysaccharide (LPS) endotoxin is suggested as a risk factor, and LPS shedding gram-negative bacteria are more prevalent in the gut-microbiome of PD patients. Here, we investigated whether LPS could contribute to the neurodegenerative disease progression via neuroinflammation, especially under conditions of aSyn pathology.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disorder of the central nervous system (CNS) targeting myelinated axons. Pathogenesis of MS entails an intricate genetic, environmental, and immunological interaction. Dysregulation of immune response i.

View Article and Find Full Text PDF

Neuronal Regulation of Feeding and Energy Metabolism: A Focus on the Hypothalamus and Brainstem.

Neurosci Bull

December 2024

Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.

In the face of constantly changing environments, the central nervous system (CNS) rapidly and accurately calculates the body's needs, regulates feeding behavior, and maintains energy homeostasis. The arcuate nucleus of the hypothalamus (ARC) plays a key role in this process, serving as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis. Agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis.

View Article and Find Full Text PDF

Monitoring central nervous system tumour metabolism using cerebrospinal fluid.

Front Oncol

December 2024

Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom.

Central nervous system (CNS) tumours are the most common cancer cause of death in under 40s in the UK, largely because they persist and recur and sometimes metastasise during treatment. Therefore, longitudinal monitoring of patients during and following treatment must be undertaken to understand the course of the disease and alter treatment plans reactively. This monitoring must be specific, sensitive, rapid, low cost, simple, and accepted by the patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!