Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Successful music-making requires precise sensorimotor synchronization, both in individual (solo) and joint (ensemble) social settings. We investigated how individual practice synchronizing with a temporally regular melody (Solo conditions) influences subsequent synchronization between two partners (Joint conditions). Musically trained adults practiced producing a melody by tapping on a keypad; each tap generated the next tone in the melody. First, the pairs synchronized their melody productions with their partner in a baseline Joint synchronization task. Then each partner separately synchronized their melody with a computer-generated recording of the partner's melody in a Solo intervention condition that presented either Normal (temporally regular) auditory feedback or delayed feedback (by 30-70 ms) in occasional (25%) randomly placed tone positions. Then the pairs synchronized again with their partner in a Joint condition. Next, they performed the second Solo condition (normal or delayed auditory feedback) followed again by the Joint condition. Joint synchronization performance was modeled with a delay-coupled oscillator model to assess the coupling strength between partners. Absolute asynchronies in the Solo Intervention tasks were greater in the Delayed feedback condition than in the Normal feedback condition. Model estimates yielded larger coupling values between partners in Joint conditions that followed the Solo Normal feedback than the Solo Delayed feedback. Notably, the asynchronies were smaller in the Joint conditions than in the Solo conditions. These findings indicate that coupled interactions in settings of two or more performers can be improved by individual synchronization practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150700 | PMC |
http://dx.doi.org/10.3389/fnhum.2024.1381232 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!